

MXASS 0.24 User's Manual

MXASS (C) 1995-1997 Michael Steil, Eittingerstr. 11b, 85459 Berglern

� VERZEICHNIS \o "1-3" �Introduction	� GEHEZU _Toc390868821 � SEITENREF _Toc390868821 �1��

What is MXASS?	� GEHEZU _Toc390868822 � SEITENREF _Toc390868822 �1��

Why MXASS?	� GEHEZU _Toc390868823 � SEITENREF _Toc390868823 �1��

Quickstart	� GEHEZU _Toc390868824 � SEITENREF _Toc390868824 �2��

Using the special features	� GEHEZU _Toc390868825 � SEITENREF _Toc390868825 �3��

Local labels	� GEHEZU _Toc390868826 � SEITENREF _Toc390868826 �3��

Macros	� GEHEZU _Toc390868827 � SEITENREF _Toc390868827 �3��

Including constants into your object code	� GEHEZU _Toc390868828 � SEITENREF _Toc390868828 �4��

.by	� GEHEZU _Toc390868829 � SEITENREF _Toc390868829 �4��

.wo	� GEHEZU _Toc390868830 � SEITENREF _Toc390868830 �4��

.br	� GEHEZU _Toc390868831 � SEITENREF _Toc390868831 �4��

.tx	� GEHEZU _Toc390868832 � SEITENREF _Toc390868832 �4��

.ts	� GEHEZU _Toc390868833 � SEITENREF _Toc390868833 �4��

Linking	� GEHEZU _Toc390868834 � SEITENREF _Toc390868834 �5��

.include	� GEHEZU _Toc390868835 � SEITENREF _Toc390868835 �5��

.load	� GEHEZU _Toc390868836 � SEITENREF _Toc390868836 �5��

Other pseudo statements	� GEHEZU _Toc390868837 � SEITENREF _Toc390868837 �5��

.ba	� GEHEZU _Toc390868838 � SEITENREF _Toc390868838 �5��

.la	� GEHEZU _Toc390868839 � SEITENREF _Toc390868839 �5��

Using different CPU types	� GEHEZU _Toc390868840 � SEITENREF _Toc390868840 �5��

6502	� GEHEZU _Toc390868841 � SEITENREF _Toc390868841 �5��

6502ILL	� GEHEZU _Toc390868842 � SEITENREF _Toc390868842 �5��

65C02	� GEHEZU _Toc390868843 � SEITENREF _Toc390868843 �5��

65816 or 65802	� GEHEZU _Toc390868844 � SEITENREF _Toc390868844 �6��

Z80	� GEHEZU _Toc390868845 � SEITENREF _Toc390868845 �6��

Writing 65816 code with MXASS	� GEHEZU _Toc390868846 � SEITENREF _Toc390868846 �6��

Writing Z80 code with MXASS	� GEHEZU _Toc390868847 � SEITENREF _Toc390868847 �6��

Command line syntax	� GEHEZU _Toc390868848 � SEITENREF _Toc390868848 �7��

Transferring the object code to the C64	� GEHEZU _Toc390868849 � SEITENREF _Toc390868849 �8��

-64net	� GEHEZU _Toc390868850 � SEITENREF _Toc390868850 �8��

-pc64	� GEHEZU _Toc390868851 � SEITENREF _Toc390868851 �8��

-transfer-	� GEHEZU _Toc390868852 � SEITENREF _Toc390868852 �8��

Starting the program immediately after transfer	� GEHEZU _Toc390868853 � SEITENREF _Toc390868853 �8��

Saving the object code to your PC’s hard disk	� GEHEZU _Toc390868854 � SEITENREF _Toc390868854 �8��

Saving the symbols to your PC’s hard disk	� GEHEZU _Toc390868855 � SEITENREF _Toc390868855 �8��

Show mode	� GEHEZU _Toc390868856 � SEITENREF _Toc390868856 �8��

Index	� GEHEZU _Toc390868857 � SEITENREF _Toc390868857 �9��

�

Introduction� XE "introduction" �

What is MXASS?

MXASS is a command line Assembler for the MOS� XE "MOS" �6502/WDC� XE "WDC" �65816� XE "65816" � and Z80� XE "Z80" � CPUs that runs on an MS-DOS� XE "MS-DOS" � platform. Its main purpose is to assemble programs for a C64 or a C128, but it can also be used for any other computer system running with one of the above mentioned CPUs.

Why MXASS?

With MXASS you can edit your source codes on any MS-DOS/Windows editor more comfortably, assemble it more quickly and run it on a C64 with much more free memory. All the advantages are listed below:

Source code is written on a PC, using any ASCII-editor you like.

Assembly time is already on a 386 much faster than any assembler running on a C64

The assembler can handle:

all the documented statements and addressing modes of the MOS6502

all the undocumented ("illegal� XE "illegal" �") MOS6502 statements

all new 65C02 statements and addressing modes (e.g. "phx" command, zp-indirect addressing mode; this processor is found in CMD floppies and hard disks)

all the new WDC65802/65816 statements and addressing modes (including 16-bit support!), to comfortably program your Flash8� XE "Flash8" �/SuperCPU� XE "SuperCPU" �!

Z80 assembly language, so you can program your C128’s second CPU directly!

Full support of macros� XE "macros" � (use them like built-in assembler statements!)

Full support of local labels (use a leading + or -)

Optional transfer of the object code (and additional data) to a C64 or C128 connected to the PC’s parallel port via a 64NET or a PC64 cable.

Object code can also be saved to hard disk in one of these formats: N64 (for 64NET), P00 (for PC64), PRG (for several C64 programs) and OBJ (raw).

Symbols can be saved to a text file.

Quickstart

Chose your favorite ASCII-editor on your PC and start writing your program. It should look like this:

.ba $1000

.la strout=$ab1e

	lda #<text

	ldy #>text

	jmp strout� XE "strout" �

text	.tx "Hello, world!"

	.by 0

Save it as "HELLO.ASM� XE "HELLO.ASM" �". Now enter DOS mode (or open a(nother) DOS box in Windows/Win95) and call MXASS using the following command line� XE "command line" �:

if you have got a C64 connected to your PC via the 64NET cable:

MXASS HELLO.ASM -64NET -START

As soon as the PC tells you to press any key, run the common 64NET wedge program by Paul Gardner-Stephen� XE "Gardner-Stephen, Paul" � or MXASS’ own 64NET� XE "64NET" � StartUp� XE "StartUp" � program, the do so as the PC tells you.

The object code will now be transferred to your C64 and started immediately. When it wants to return to BASIC, it returns to the 64NET wedge program again, so that you need not start this program again to do another transfer. If you want to jump to BASIC� XE "BASIC" �, you have to replace your "RTS" by a "JMP $E386".

if you have got a C64 connected to your PC via the PC64� XE "PC64" � cable:

MXASS HELLO.ASM -PC64 -START

Do the same as above, but use the PC64 StartUp� XE "StartUp" � program.

if you have got no C64 connected to your PC, but the PC64 emulator on your PC:

MXASS HELLO.ASM -P00

Then run PC64 and LOAD & SYS the P00 file.

if you have got another C64 emulator:

MXASS HELLO.ASM -PRG

The object code file ("HELLO.PRG") should then be able to be imported into your emulator.

Using the special features

Local labels� XE "local labels" �

Local labels start with a + or a - character. They can only be defined as labels in the code, not as constants defined by ".LA".

Example:

	ldx #0

	lda #" "

-LOOP	sta $0400,x

	sta $0500,x

	sta $0600,x

	sta $0700,x

	inx

	bne -LOOP

You may have as many "-LOOP" labels as you like, but this label can only be referred to from below its definition. So, a label starting with a + can only be referred to from above. If there are several local labels with the same name, the nearest will be taken by the assembler.

Second example:

	inc $02

	bne +

	inc $03

+	lda ...

Here, the reference is above the definition, so you have to use a + to define a local label. You can here also see that you do not need a name for a local label, a simple + or - is enough.

Macros� XE "macros" �

Macros can be defined by the following sequence:

.macro poke address,value

	lda #value

	sta address

.endmacro

(As every pseudo statement, you can abbreviate� XE "abbreviation" � these two by using only its first two letters: ".ma" and ".en".)

You can refer to this macro simply be typing :

	poke� XE "poke" � 53280,0

The following code will be generated:

	lda #0

	sta 53280

Note that the symbols "address" and "value" are only defined within the macro code.

If you need labels within a macro, you have to use local labels (see above), since a normal label can only be defined one. Attention: Do not use simple labels as + or - within a macro, since the assembler could assume that you refer to this label rather than to one outside. Example:

-	jsr getkey

jsr printkey

clearscreen� XE "clearscreen" � ; calls the macro

	lda clearscreenflag

	bne - ; clear the screen again

We assume that the macro "clearscreen" is defined as follows:

.ma clearscreen

	ldx #0

	lda #" "

-	sta $0400,x

	sta $0500,x

	sta $0600,x

	sta $0700,x

	inx

	bne -

.en

So "bne -" in the main routine would refer to the line "sta $0400,x" rather than to "jsr getkey".

That’s why you should give local labels within macros unique names� XE "unique names" �.

Including constants� XE "constants" � into your object code

.by� XE ".by" �

You can store constant bytes in your object code with the ".by" pseudo statement. Simply add, separated by commas, as many byte values as you like:

colors	.by 0,11,12,15,1,12,11,0

(Long form ".byte" is also allowed.)

.wo� XE ".wo" �

The same is possible with words (double bytes):

table	.wo mount,read,write,unmount ; defining labels in your program

.br� XE ".br" �

If you need to reserve an amount of bytes or want to insert a block of constant bytes, you can use ".br" (bytes reserve). The parameters define how many times, and what value will be stored there:

buffer	.br 17*256, 0 ; reserves 17 blocks and stores zeroes in it

.tx� XE ".tx" �

Text can be stored with ".tx":

error	.tx "An error occured while reading."

	.by 0

Note that it depends on the ASCII� XE "ASCII" �/PETCII� XE "PETCII" � configuration whether the text will be stored in ASCII or Commodore PETASCII� XE "PETASCII" � format. Use ".ASCII" to switch to ASCII mode and ".PETSCII" to switch to Commodore PETASCII mode. If you do not use one of these two pseudo statements, the assembler generates ASCII code. Note that any other reference to text constants will be converted if in PETSCII mode, such as lda #"A", for instance.

.ts� XE ".ts" �

Since C64 and C128 have another format to store text, the screen code, this format can also be generated by the assembler:

.ba $1000

	ldx #11

-	lda text,x

	sta $0400,x

	dex

bpl -

	rts

text	.ts "Hello World!"

Linking� XE "linking" �

.include� XE ".include" �

With ".include" followed by the name of another source text file in quotes you tell MXASS to continue assembling in another file. After that, it will of course continue in the first source file. So you can split very huge source texts.

.include "floppy.inc"

.load� XE ".load" �

".load" tells MXASS to transfer an additional file to the C64 after assembly is complete. This only works if you use the "transfer" switch in the command line� XE "command line" � (see below). With the help of load, you make sure that all of your data that is needed by your program is really in the C64’s memory. Note that the first two bytes of the file symbolize the start address in memory after transfer (PRG format). This address cannot be changed by MXASS. If you want to change it, you have to use a hex editor.

.load "sinus.dat"

Other pseudo statements� XE "pseudo statements" �

.ba� XE ".ba" �

.ba defines the base address. It can also be changed within the code, but only if the new address is above the old one.

.ba $9F00

.la� XE ".la" �

Define a global label like this:

.la screen=$0400

.la firstlineused=screen+40

Using different CPU types� XE "CPU types" �

MXASS can generate code for five different CPU types. What kind of statements are allowed can be defined with the ".cpu" pseudo statement. Is has to be followed by the CPU type:

6502� XE "6502" �

If you specify this CPU, only 6502 legal opcodes are allowed. Your program will run on any 65xx processor.

6502ILL� XE "6502ILL" �

Same as above, but the 6502’s undocumented ("illegal� XE "illegal" �") opcodes are allowed. Note that programs with illegal opcodes will neither run on 65C02 (several non-Commodore disk drives) nor on 65816 systems (Flash8� XE "Flash8" �/SuperCPU� XE "SuperCPU" �), nor on the C64DX/C65 (65CE02). But there are no problems on standard C64 and C128 computers.

65C02� XE "65C02" �

In this mode, illegal� XE "illegal" � opcodes are forbidden, but you may use the 65C02’s extended instruction set.

65816� XE "65816" � or 65802� XE "65802" �

Here you can use all 65816 statements, which include all legal 6502 and all 65C02 special statements. See "" for more information.

Z80� XE "Z80" �

The Z80 has nothing in common with the 65xx series processors. But since the C128 has a built-in Z80, MXASS supports its full instruction set.

Writing 65816� XE "65816" � code with MXASS

The additional 65816 features can be used as follows:

The size of the accumulator and the index registers can be set with:

.al� XE ".al" �	16 bit accumulator

.as� XE ".as" �	8 bit accumulator

.rl� XE ".rl" �	16 bit index registers

.rs� XE ".rs" �	8 bit index registers

Note that this does not set any of the CPU’s 8/16 flags� XE "8/16 flags" �. It has only to be defined to let the assembler to know what operand size it has to store in the object code. Use the "rep� XE "rep" �" and "sep� XE "sep" �" instructions to tell your CPU.

You may define the following macros� XE "macros" � to make it easier:

.ma acculong

	rep #%00100000	

	.al

.en

.ma accushort

	sep #%00100000	

	.as

.en

.ma indexlong

	rep #%00010000	

	.al

.en

.ma indexshort

	sep #%00010000	

	.as

.en

.ma bothlong

	rep #%00110000

	.al

	.rl

.en

.ma bothshort

	sep #%00110000

	.as

	.rs

.en

Simply type "bothlong" in your source code and both the accumulator and the index registers will be 16 bits long.

Writing Z80� XE "Z80" � code with MXASS

Remember that the existing StartUp programs for the C64 can only start 65xx programs. If you want to start Z80 programs with these StartUps you have to add additional code to your program that switches the computer to Z80 mode. Use the following piece of code to enable the Z80 from the C128 mode:

;**

; Piece of code for a C128� XE "C128" � program that uses both the 8502 and the Z80.

; Any Z80 routine can be called by a 8502 routine by "call", it has to be

; terminated by a "ret".

;**

.ba $3000; start in C128 mode with BANK 0: SYS DEC("3000")

.ma call ROUTINE

 ldx #<ROUTINE

 ldy #>ROUTINE

 jsr Z80CALL

.en

;*** main program ***

 jsr Z80INIT ; needed once

 call Routine1 ; this is a Z80 routine!

 rts

;*** 8502/Z80 management subroutines **************************************

Z80INIT lda #$c3

 sta $ffee

 lda #<Z80STRT

 sta $ffef

 lda #>Z80STRT

 sta $fff0

 lda #$58

 sta $ffdc

 lda #$60

 sta $ffdd

 rts

Z80CALL stx Z80SFMD+1

 sty Z80SFMD+2

 jmp $ffd0

 .CPU Z80

Z80STRT ld sp,$8000 ; set stack

Z80SFMD call $FFFF

 jp $ffe0

; ***** Z80 routines **

Routine1:

 ld bc,$d020 ; decrements the border color and

 in a,(c) ; then terminates immediately

 dec a

 out (c),a

 ret

If you work with the Commodore Z80 microprocessor cartridge� XE "cartridge" �, this is more difficult, since the 6510 and the Z80 addressing space are not the same. You have to move your Z80 code $1000 bytes upwards before enabling the Z80. If you use the Z80 emulator from Rossmoeller’s� XE "Rossmoeller" � CP/M� XE "CP/M" � emulator shipped with the Flash 8, this is the same. Please read your manual for additional information.

Command line� XE "command line" � syntax

You start MXASS like this:

MXASS [-options] filename[.ASM] [-options]

It is irrelevant whether you use capital letters typing the options or not.

Transferring� XE "transfer" � the object code to the C64

-64net� XE "-64net" �

The switch "-64net" tells MXASS to transfer the object code and all ".load" files to a C64 connected to LPT1� XE "LPT1" � via the 64NET cable. This cable has been developed by Paul Gardner-Stephen� XE "Gardner-Stephen, Paul" � and used in his software 64NET. Its speed is below the speed of the PC64 cable, but I decided to implement it because really many people own this kind of cable. As soon as the PC tells you to press any key, you have to run the 64NET cable StartUp� XE "StartUp" � program on your C64 (if it is not already active) and then do so as the PC tells you. If you do not have the 64NET cable StartUp program, you can also use Paul Gardner-Stephen’s 64NET wedge program.

-pc64� XE "-pc64" �

If you own a PC64� XE "PC64" � cable, you have to use the switch "-pc64" to tell MXASS to transfer the object code and all ".load" files to a C64 connected to LPT1� XE "LPT1" � via the PC64 cable developed by Wolfgang Lorenz� XE "Lorenz, Wolfgang" �, who wrote PC64 emulator� XE "emulator" �. This cable makes about 10 Kbytes per second on a C64, twice the speed on a C128 in fast mode and even faster on a C64 with Flash8� XE "Flash8" � or SuperCPU� XE "SuperCPU" �. So it is the best choice if you think about which cable you are going to use.

-transfer-� XE "-transfer-" �

"-transfer-" disables transfer and overrides any "-64net" or "-pc64" switch before.

Starting� XE "start" � the program immediately after transfer

If you add "-start� XE "-start" �" to your command line, the program will be run immediately after transfer at the program’s address in memory. To override this, use "-start� XE "-start-" �-".

Saving� XE "save" � the object code to your PC’s hard disk

The object code can be written to your PC’s hard disk in several file formats:

OBJ� XE "OBJ" �

With "-ocode� XE "-ocode" �" the object code will be written to disk as a raw file without modifications.

PRG� XE "PRG" �

With "-prg" the object code will be written to disk in PRG format. The first two bytes contain the program’s start address in memory, the object code itself follows immediately (see ".load" pseudo opcode). This file format can be read by most Commodore emulators.

P00� XE "P00" �

With "-p00" the object code will be written to disk in PC64 P00 format. This file format has a simple header and can directly be loaded within the PC64 emulator.

N64� XE "N64" �

With "-p00" the object code will be written to disk in 64NET P00 format. This file format has a simple header and can directly be read by 64NET.

Saving� XE "save" � the symbols� XE "symbols" � to your PC’s hard disk

If you add "-sym" to your command line, the symbols will be written to disk after assembly is complete. To override this, use "-sym-".

Show mode� XE "show mode" �

If you add "-show" to your command line, every line being assembled will be shown on screen while assembly. To override this, use "-show-".

�
Index

� INDEX \h "A" \c "2" ��
.

.al 6

.as 6

.ba 5

.br 4

.by 4

.include 5

.la 5

.load 5

.rl 6

.rs 6

.ts 4

.tx 4

.wo 4

6

-64net 8

64NET 2

6502 5

6502ILL 5

65802 6

65816 1; 6

65C02 5

8

8/16 flags 6

A

abbreviation 3

ASCII 4

B

BASIC 2

C

C128 7

cartridge 7

clearscreen 3

command line 2; 5; 7

constants 4

CP/M 7

CPU types 5

E

emulator 8

F

Flash8 2; 5; 8

G

Gardner-Stephen, Paul 2; 8

H

HELLO.ASM 2

I

illegal 1; 5

introduction 1

L

linking 5

local labels 3

Lorenz, Wolfgang 8

LPT1 8

M

macros 2; 3; 6

MOS 1

MS-DOS 1

N

N64 8

O

OBJ 8

-ocode 8

P

P00 8

PC64 2; 8

-pc64 8

PETASCII 4

PETCII 4

poke 3

PRG 8

pseudo statements 5

R

rep 6

Rossmoeller 7

S

save 8

sep 6

show mode 8

start 8

-start 8

-start- 8

StartUp 2; 8

strout 2

SuperCPU 2; 5; 8

symbols 8

T

transfer 8

-transfer- 8

U

unique names 4

W

WDC 1

Z

Z80 1; 6

�
�

MXASS User's Manual

MXASS User's Manual

� SEITE �8�

� SEITE �7�
