
CP/M Mods for the 1581

Transparent C64
ROM Cartridges

Easy-To-Build User Port
to True RS232 Interface

Independent 80-Column
Screens on the C128

80-Column Hi-Res
Colour on theCl28

More C128MMU Secrets!

Amiga Section:

Butterfield: Quote Mode
on the Amiga? It's there!

Event Maker:
Look Ma, No Hands!

Get 1080 Performance
from your 1902 Monitor

Enhanced ECHO Command

BULLET-PROOFING YOUR COMPUTER
Inexpensive surge protection in minutes!

Canada $4.25
USA $3.50

In Depth Review:
Commodore's New

1581 Disk Drive

The Potpourri Disk
H e l p !

This HELPful utility gives you instant
menu-dr iven access to text files
at the touch of a key - while any
program is running!

L o a n H e l p e r

How much is that loan really going
to cost you? Which interest rate
c a n you afford? With Loan Helper,
the answers are as close as your
friendly 64!

K e y b o a r d

Learning how to play the piano?
This handy educat iona l program
makes it easy a n d fun to learn the
notes on the keyboard

Filedump

Examine your disk files FAST with
this mach ine l a n g u a g e utility
Handles six formats, including hex,
decimal. CBM a n d t rue ASCII.
WordPro a n d SpeedScript.

A n a g r a m s

Anagrams lets you unscramble
words for crossword puzzles a n d
the like. The program uses a recur
sive ML subroutine for max imum
speed ana ef f ic iency

Life

A FAST machine l anguage version
of mathemat ic ian John Horton
Conway's classic simulation. Set
up your o w n 'colonies' a n d w a t c h
them grow!

W a r Ba l loons

Shoot d o w n those evil Nazi War
Balloons wi th your handy A c m e
Cannon! Don't let t hem get away!

V o n G o o g o l

At last! The m a d philosopher,
Helga von Googo l , brings her own
brand of wisdom to the small
screen! If this is 'Al'. then it just ain't
natural!

N e w s

Save the money you spend o n
those supermarket tabloids - this
program will genera te equally
convincing headl ine copy - for
free!

W r d

The ul t imate in easy- to-use da ta
base programs. WRD lets you
quickly a n d simply create, exam
ine a n d edit just abou t any data.
Comes wi th sample file.

Q u i z

Trivia fanatics a n d students alike
will have fun with this program,
which gives you multiple choice
tests on mater ial you have en
tered with the WRD program.

A H A ! L a n d e r

AHAI's great lunar lander program.
Use either joystick or keyboard to
c o m p e t e against yourself or up to
8 other players. Watch out for
space mines!

B a g t h e Elves

A c u t e little arcade-sty le game ;
cap tu re the elves in the b a g as
quickly as you c a n - but don' t ge t
the g o o d elf!

B l a c k j a c k

The most flexible blackjack simula
t ion you'll find anywhere. Set u p
your favourite rule variations for
doubl ing, surrendering a n d split
t ing the deck.

File C o m p a r e

Which of those t w o files you just
c rea ted is the most recent ver
sion? With this great utility you'll
never b e left wondering.

G h o u l Dogs

A r c a d e maniacs look out! You'll
n e e d all your dexterity to handle
this w icked joystick-buster! These
m a d dog-monsters from space
are not for novices!

O c t a g o n s

Just the thing for you Mensa types.
Oc tagons is a challenging puzzle
of t he mind. Four levels of play,
a n d a tough 'memory' variation
for real experts!

Backst ree ts

A nifty a r c a d e game , 1 0 0 % m a
ch ine language, that helps you
learn the typewriter keyboard
while you play! Unlike any typ ing
p rogram you've seen!

All the above programs, just $17.95 US, $19.95 Canadian. No, not EACH of the
above programs, ALL of the above programs, on a single disk, accessed
independently or from a menu, with built-in menu-driven help and fast-loader.

The ENTIRE POTPOURRI COLLECTION
JUST $17.95 US!!

See Order Card at Center

Volume 8
Issue 03

Paid Circulation
15,000

Bits and Pieces . . 6
Ribbon Rejuvenation
CAUTION!
Defaults
Peek-a-Page
File Hider
More on the VAL Bug
Multiply Bug
LIST During a Program
Inside View
Mobile BASIC
Bytes Free
Getting The Boot
Booting Up Your Mode Menu
Quick File Copier
FAST GULP
Built-in Crash Protection
Common Memory
Customizing CLI Windows
Titles in AmigaBasic
Easter Eggs

Letters 13
Glossy paper pricing
Blazin' Forth docs
Drive head noise abatement
The 68010 and commercial disks
Taking Amiga to task
Mysterious quote mode explained
Guru mail department
More Plus/4 Tech Info

News BRK 76
No-Fault Program Entry Insurance
Send TPUG Subscriptions to TPUG!
Transactor Renewals
Multiple Year Subscriptions
Use the New Subscription Cards!
New Transactor Special Offers
U.S. Orders Invoiced In Canadian Dollars
Advertisers Wanted
Group Subscription Rates: The 20/20 Deal
Mail-Order Products No Longer Offered
Transactor Mail Order
AmiEXPO in New York City
Special Amiga Software Offer
Benchmark Modula-2 from Oxxi, Inc.
DesignText, from DesignTech
JForth, from Delta Research Inc.
LexCheck. from C.D.A Inc.
VideoScape 3D, from Aegis Development Inc.

Transactor

TransBloops . . .
The Blunderful Mr. Ed
Long Symass Labels
Space or Null String
A few TransBasic bugs
Capacitance Meter Line Numbers
First-Aid for Programmer's Aid
Xref64
Division Revision

11

TeleColumn The PunterNET BBS network 18
A SwitChable RS-232 Interface An easy do-it-yourself RS-232 adapter . . 19
Bullet PrOOf CompUterS Simple surge protection and other tips 22
The 1581 Disk DriVe a technical evaluation 26
CP/M and the 1581 Disk Drive whybUyupgrades? 33
Programming the 1541 u s n o t a s h a r d a s y o u t h s 35
Auto Transmission for the C64 an auto UN-RUN utility 40
Common Code another approach to code compression " 1

GoGo Dancer the ultimate labelled goto utility 46
NOW YOU See It, NOW YOU Don't C64 transparent cartridges 49
Fiddling About high resolution 80 column colour on the C128 . . 51
Twin 80 Screen for the CI28 Two, two, two monitors in one! 56
Memory Lane Exploring the dark alley off Zero-Page Street . . . 60

Amiga Section

Event Maker Nobody does it better... faster and more accurately too! . . 62
A New ECHO Improving on AmigaDOS 66
Amiga Programmed Cursor? Jim B. offers some console-ation 70
Amiga DiSpatCheS Our switched-on scribe brings you the latest news 73

Note: before entering programs, s e e "Verifizer" on page 4

Transactor ABOUT THE COVER: Toronto's CN Tower is the tallest free-standing structure in the
world. It took just over 3 years for a crew of 1537 to complete the tower, at a cost of $57
million. It was built by CN Telecommunications to overcome the problems faced by firms
wishing to transmit their signals northward past the growing Toronto downtown core. The
lip reaches 1815 feet 5 inches (553.33m) into the sky - about 5'/i football fields. The
"doughnut" shaped portion houses most of the communications equipment. The angled
perimeter just above is the outdoor observation deck (height: 1136 feet or 346m). One
floor above that is the indoor observation deck. On the same level is "Sparkles", a
discotheque with a spectacular view of the Toronto skyline, said to be one of the most
handsome profiles in the world. Above that is the "Top of Toronto" restaurant, aptly
named, which makes one complete revolution every 72 minutes. The smaller pod at the
base of the antenna is known as the space deck. It's the highest observation deck in the
world at 1465 feet (447m), but only 11 feet higher than the roof of the Sears Tower in
Chicago. All decks combined have a capacity of about 400 people, and about 1.7 million
visit each year. Ascending or descending, the elevators travel at about 15 kmh, making

_ them the fastest commercial elevators in the world - descending is equivalent to falling in
an open parachute. Tip to base, the lower is within plumb by 1.1 inch. On windy days the tip can sway 3 feet in either direction
(limited by two 10 ton swinging counterweights mounted on the antenna), and was designed to withstand winds up to 260 mph.
All windows have an outer pane, 3/g inch thick, an inner pane, 'A inch thick, are armour-plated, and can withstand pressures in
excess of 120 psi. All construction materials were chosen for their fire-proof or fire-resistant qualities. Smoking is allowed in the
restaurants only. In the unlikely event of fire, several pumps at the base can send up 500 gallons of water per minute. There is
also a reservoir of water just above the main pod. Lightning strikes the tower about 60 times per year but there's probably no
safer place during a storm. Every surface which could possibly attract lightning is attached to three copper strips running down
the tower, connected to forty-two 22 foot grounding rods buried 20 feet below the surface. Since the tower opened in '78, Prof.
Wasyl Janischewskyj of the University of Toronto has been in charge of a lightning study at the CN Tower. They've found thai
lightning starts from the smaller surface. So if it hits a lake or a field, the lightning indeed comes down from the clouds. If the
lower end of the path is the tip of a tall building, the clouds are then the larger surface and the lightning goes up. Since lightning is
the result of opposite static charges between the clouds and ground, any tower reduces the distance the spark is required to
jump, which means the discharge occurs at lower voltages. Prof. Janischewskyj's team felt this might do less damage, but then
discovered that what appears to be a single bolt is often actually several rapid flashes when the lower end is the tip of a tall
structure. Information from the study will undoubtedly assist power companies design insulators on hydro towers that are less
likely to short-circuit. Special thanks to Joan Cormier and Penny Wright of the CN Tower for supplying the photo and these
interesting facts. Extra special thanks to Patricia Kelly, and to Allan Stokell of Positive Images, for helping us find the supplier.

The Transactor 1 November 1987: Volume 8, Issue 0 3

Transactor
Ths MuyuiSM toe Commodon P r o g r a m m e

Editor-in-Chief
Karl J. H. Hildon

Publisher
Richard Evers

Technical Editor
Chris Zamara

Submissions Editor
Nick Sullivan

Customer Service
Jennifer Reddy

Contributing Writers
Ian Adam
David Archibald
Jim Barbarello
Anthony Bertram
Tim Bolbach
Donald Branson
Neal Bridges
Anthony Bryant
Jim Butterfield
Dale A. Castello
Betty Clay
Joseph Caffrey
Tom K. Collopy
Robert V. Davis
Elizabeth Deal
Frank E. DiGioia
Chris Dunn
Michael J. Erskine
Jack Farrah
Mark Farris
Jim Frost

Miklos Garamszeghy
Eric Germain
Michael T Graham
Eric Guiguere
Thomas Gurley
R. James de Graff
Tim Grantham
Adam Herst
Thomas Henry
John Holttum
John Houghton
Robert Huehn
David Jankowski
Clifton Karnes
Lome Klassen

Jesse Knight
Gregory Knox
David Lathrop
James A. Lisowski
Richard Lucas
Scott Maclean
Steve McCrystal
Stacy Mclnnis
Chris Miller
Terry Montgomery
Ralph Morrill
D.J. Morris
Michael Mossman
Bryce Nesbitt
Gerald Neufeld
Noel Nyman
Matthew Palcic
Richard Perrit
Larry Phillips
Terry Pridham
Raymond Quirling
Doug Resenbeck
Richard Richmond
John W. Ross
Dan Schein
E.J. Schmahl
David Shiloh
Darren J. Spruyt
Aubrey Stanley
David Stidolph
Richard Stringer
Anton Treuenfels
Audrys Vilkas
Jack Weaver
Geoffrey Welch
Evan Williams

Program Listings In Transactor

All programs listed in Transactor will appear as they would on your screen in Upper/Lower case
mode. To clarify two potential character mix-ups, zeroes will appear as '0' and the letter " o " will of
course be in lower case. Secondly, the lower case L (T) is a straight line as opposed to the number 1
which has an angled top.

Many programs wil l contain reverse video characters that represent cursor movements, colours, or
function keys. These will also be shown exactly as they would appear on your screen, but they're
listed here for reference. Also remember: CTRL-q within quotes is identical to a Cursor Down, et al.

Occasionally programs wil l contain lines that show consecutive spaces. Often the number of spaces
you insert will not be critical to correct operation of the program. When it is, the required number of
spaces will be shown. For example:

print" flush right' - would be shown as - print "[10 spaces]flush right"

Cursor Characters For PET / CBM / VIC / 64

Down -
Up - •
Right - •
Left - [Lft]
RVS - D
RVSOff- •

Colour Characters For VIC / 64

Insert
Delete -D
Clear Scrn B
Home -D
STOP H

Black - Q Orange

White - Q Brown

Red - Q Lt. Red
Cyan - [Cyn] Grey 1
Purple- [Pur] Grey 2
Green - • Lt. Green

Blue - B Lt. Blue
Yellow - [Yel] Grey 3

Function Keys For VIC / 64

F l - l l F 5 -

F2- Q F6-

F3- Q F7-

F4- I F8-

a •

• •

Production
Attic Typesetting Ltd.

Printing
Printed in Canada by

MacLean Hunter Printing

Transactor is published bi-monthly by Transactor Publishing Inc.. 85 West Wilmot Street, Unit 10,
Richmond Hill. Ontario. L4B 1K7. Canadian Second Class mail registration number 6342. USPS 725 -
050, Second Class postage paid at Buffalo. NY. for U.S. subscribers U.S. Postmasters: send address
changes to Transactor. P.O. Box 338. Station C, Buffalo. NY, 14209 ISSN* 0827-2530.

Transactor is in no way connected with Commodore Business Machines Ltd. or Commodore Incorporated.
Commodore and Commodore product names (PET. CBM. VIC. 64,128. Amiga) are registered trademarks of
Commodore Inc.

Subscriptions:
Canada $19 Cdn. U.S.A. $15 US. All other $21 US.

Air Mail (Overseas only) $40 US. ($4.15 postage/issue)

Send all subscriptions to: Transactor. Subscriptions Department. 85 West Wilmot Street, Unit 10.
Richmond Hill, Ontario. Canada, 1.4B 1K7.416 764 5273. Note: Subscriptions are handled at this address
ONLY. Subscriptions sent to our Buffalo address (above) will be forwarded to our Richmond Hill HQ. for
best results, use postage paid card at center of magazine.

Editorial contributions are always welcome Minimum remuneration is $40 per printed page. Preferred
media are 1541, 2031. 4040, 8050. or 8250 diskettes with WordPro. WordCraft, Superscript, or SEQ text
files, or Amiga format Vh diskettes with ASCII text files. Program listings of more than a few lines should be
provided on disk. Manuscripts should be typewritten, double spaced, with special characters or formats
clearly marked. Photos should be glossy black and white prints. Illustrations should be on white paper with
black ink only.

Please Note: Transactor's
phone number is: (416) 764-5273

Quantity Orders:

Norland Communications
251 Nipissing Road, Unit 3
Milton, Ontario
L9T4Z5
416 876 4774

CompuServe Accounts
Contact us anytime on GO CBMPRG,

GO CBMCOM, or EasyPlex at:

Karl J.H. Hildon 76703,4242

Chris Zamara 76703,4245

Nick Sullivan 76703,4353

SOLD OUT: The Best of The Transactor Volumes 1 & 2 & 3; Vol 4 Issues 03,04,05,06, and Vol 5 Issues 02,
03, 04 are available on microfiche only

Still Available: Vol. 4: 01.02. Vol. 5: 0 1 . 04, 05, 06. Vol 6: 01.02. 03.04,05,06
Vol. 7: 01 , 02.03, 04. 05. 06. Vol. 8: 01 , 02,03

Back Issues: $4.50 each. Order all back issues from Richmond Hill HQ.

All material accepted becomes the property of Transactor. All material is copyright by Transactor
Publications Inc. Reproduction in any form without permission is in violation of applicable laws. Solicited
material is accepted on an all rights basis only. Write to the Richmond Hill address for a writer's package.
The opinions expressed in contributed articles are not necessarily those of Transactor. Although accuracy is
a major objective. Transactor cannot assume liability for errors in articles or programs. Programs listed in
Transactor, and/or appearing on Transactor disks, are copyright by Transactor Publishing Inc. and may not
be duplicated or distributed without permission.

The Transactor 2 November 1987: Volume 8, I t t u e Q 3

Copy Copy Revisited

Here are some excerpts from page 3 exactly one year ago:

We've been receiving a number of letters regarding local duplication
of Transactor Disks.

Once again the question of duplicating Transactor disks has been the topic
for discussion around the office. It's amazing how a problem hits harder at
home. Software piracy has been all around us for years and although you
know it's affecting the industry, you can't imagine the impact until you
become a victim. Recently we've learned that many user groups and other
"vendors" have been offering Transactor disks on a regular basis at
substantially less than our retail price.

We're not to trying to find fault or place blame. In fact, we probably have no
one to blame but ourselves. Although our disk labels show a copyright
notice, up until this issue we stated right on our policies page (page 2) that
our programs are "public domain; free to copy, not to sell". This notice goes
back about 4 years - a popular phrase originally designed to prevent one's
program from being "acquired" by someone in the software business.
However, the fee at regular club meetings to obtain a copy of any disk being
offered that night is carefully termed a "copying fee". Usually it's about
$5.00. And 5 bucks isn't a lot - there's equipment wear and tear, time,
trouble and transportation, site rental perhaps, plus any number of ex
penses a club might have to dole out before making the first copy of the
evening. Clubs can claim they're not "selling" Transactor disks, but that's
only bending the original intent of our policy, which was to avoid the idea
that we wanted to exert totalitarian authority over the personal possession
of any machine-readable program from Transactor magazine.

.. .what little profit we take doesn't even put a dint in our total
expenses.

So if our programs are public domain, what's the difference between our
disks and any other club disk? Well, it was an error for us to use the term
"public domain" at all - our programs are copyright, as stated on every
label of every disk we sell. The programs we publish aren't just donated -
we pay for the right to print an author's work... a total of almost $3000
every issue. Beyond that, we invest hundreds of hours in producing every
T. disk master. We just can't afford to release the disks to the public domain.

All we ask is that you 'de-unify" the disks into their respective
categories... the unified collection will cost less.

Which is what we sell. Unfortunately, it appears that this policy too has
been somewhat more broadly interpreted than we intended. As you may
know, the programs in the last 20 issues have been chosen from our
submissions to fit a predetermined theme. Effectively, then, the main
programs from any issue were already in a "respective category". The disks
for these magazines always start with a few utility programs, followed by
our short Bits, and then our main program listings. Separating just the main
programs onto another disk, with perhaps some other programs of the
same nature, was essentially respecting our request. It's difficult to say
whether the result was a significant loss in sales, but if so it was once again
our own fault.

.. .manufacturers need to offer more in a package than just a
program to accrue sales.

Unlike a software firm that can protect against piracy by offering documen
tation and other services to registered users only, support for our programs
is easily obtained just by dropping the subscription card in the mailbox. You
The Transactor 3

even get updates! So, maybe our new disk labels will help. That's right,
we've decided to take some of our own advice. In an attempt to protect
against piracy (without protecting the disks) we're going to offer something
that can only be obtained from the manufacturer. Starting with the disk for
this issue, all Transactor disks will be shipped with two-colour labels that
should distinguish them from any other disk in your collection. They'll be
colour-coded to the cover of the corresponding magazine, so if the logo is
green, as on this issue, the disk label will also be green. You might say, "so
what". Well, another feature that I'm really looking forward to is having the
entire directory printed right on the label! We've selected a label size that
will accommodate the whole directory listing, and although the file names
will be small, I intend to push this typesetting equipment to the limit to
ensure their legibility.

Back on the duplication issue, we've composed a Site Licensing agreement
for anyone wishing to make multiple duplicates of Transactor disks. Simply
send us $3.00 for every copy made. Including this surcharge, club
members will still pay less than our retail price, club treasuries will still
continue to benefit from the sales, and the clubs will still be able to offer the
service value of on-the-spot availability.

Will the member need to produce his or her copy of the magazine before
they're allowed their copy? No. But, they should be aware that unlike
games or a menu driven application, most of the programs we publish are
of limited value without the documentation in the magazine.

Remember, we wouldn't be the first computer publication to become
another page in Chapter II...

What will we do if the clubs and other offending parties don't comply?
Probably nothing. But remember, if your club or anyone else sells or allows
copying of Transactor disks, they are competing against us with our own
product! Although we'd rather be the only source, we'd much rather stay in
business. Our Site Licensing agreement is a fair compromise that we hope
will be adopted and upheld by interested parties.

A package is going out within the next week to over 400 clubs around the
world. The club addresses were obtained from the list published regularly
in Commodore magazine, so if your club isn't on this list, please contact us.
The package contains most of the above information, plus details of our 20/
20 deal. As described in News BRK, the 20/20 deal means 20% off for any
order of 20 subscriptions, disks, or any other Transactor product. This is a
natural for Commodore user groups, but you don't need to be a club
member to take advantage of it. So post the notice on your local BBS - if 19
others respond, the total savings are pretty respectable! The area school
board office is another good place to spread this announcement.

On a lighter note, what do you think of our new cover design? (Duke's in
the Skypod). It isn't necessarily permanent - we're just experimenting with
it while we're off the newsstand. Comments or suggestions, anyone? Now's
the time to put in your two cents' worth. Oh yes, one more thing: one free
Bits book goes to the first long distance caller to say the word "shazam",
and another to the 10th local caller.

Karl J.H. Hildon, Editor in Chief

November 1987: Volume 8, Issue 0 3

Using "VERIFIZER"
The Transactor's Foolproof Program Entry Method

VERIFIZER should be run before typing in any long program from the
pages of The Transactor. It will let you check your work line by line as
you enter the program, and catch frustrating typing errors. The VERIFI
ZER concept works by displaying a two-letter code for each program
line which you can check against the corresponding code in the
program listing.

There are five versions of VERIFIZER here; one for PET/CBMs, VIC or
C64, Plus 4, CI 28, and B128. Enter the applicable program and RUN it.
If you get a data or checksum error, re-check the program and keep
trying until all goes well. You should SAVE the program, since you'll
want to use it every time you enter one of our programs. Once you've
RUN the loader, remember to enter NEW to purge BASIC text space.
Then turn VERIFIZER on with:

SYS 634 to enable the PET/CBM version (off. SYS 637)
SYS 828 to enable the C64/VIC version (off: SYS 831)
SYS 4096 to enable the Plus 4 version (off: SYS 4099)
SYS 3072,1 to enable the C128 version (off: SYS 3072,0)
BANK 15: SYS 1024 for B128 (off: BANK 15: SYS 1027)

Once VERIFIZER is on, every time you press RETURN on a program
line a two-letter report code will appear on the top left of the screen in
reverse field. Note that these letters are in uppercase and will appear as
graphics characters unless you are in upper/lowercase mode (press
shift/Commodore on C64/VIC).

Note: If a report code is missing (or "—") it means we've edited that
line at the last minute which changes the report code. However, this
will only happen occasionally and usually only on REM statements.

With VERIFIZER on, just enter the program from the magazine nor
mally, checking each report code after you press RETURN on a line. If
the code doesn't match up with the letters printed in the box beside the
listing, you can re-check and correct the line, then try again. If you
wish, you can LIST a range of lines, then type RETURN over each in
succession while checking the report codes as they appear. Once the
program has been properly entered, be sure to turn VERIFIZER off with
the SYS indicated above before you do anything else.

VERIFIZER will catch transposition errors like POKE 52381,0 instead
of POKE 53281,0. However, VERIFIZER uses a "weighted checksum
technique" that can be fooled if you try hard enough; transposing two
sets of 4 characters will produce the same report code but this should
never happen short of deliberately (verifizer could have been designed
to be more complex, but the report codes would need to be longer, and
using it would be more trouble than checking code manually). VERIFI
ZER ignores spaces, so you may add or omit spaces from the listed
program at will (providing you don't split up keywords!). Standard
keyword abbreviations (like nE instead of next) will not affect the
VERIFIZER report code.

Technical info: VIC/C64 VERIFIZER resides in the cassette buffer, so
if you're using a datasette be aware that tape operations can be
dangerous to its health. As far as compatibility with other utilities goes,
VERIFIZER shouldn't cause any problems since it works through the
BASIC warm-start link and jumps to the original destination of the link
after it's finished. When disabled, it restores the link to its original
contents.

CI
CF
LI

HC
DH
GK
OG
JO
AF
IN

ON
IB

CK
EB
HE
01
JB
PA
HE
EL
LA
Kl
EB
DM

KE
JF
LI
BE
DH
GK
FH
KP
AF
IN
EC
EP
OC
MN
MG
DM
CA
NG
OK
AN
GH
JC
EP
MH
BH

PET/CBM VERIFIZER (BASIC 2.0 or 4.0)

10 rem» data loader for ' 'verifizer 4 . 0 ' ' »
15 rem pet version
20 cs = 0
30 for i = 634 to 754:read a:poke i,a
40 cs = cs + a:next i
5 0 :
60 if cs<>15580 then print' ' * * * * * data error * * *»*
70 rem sys 634
80 end
100:
1000 data 76, 138, 2 ,120,173,163, 2,133,
1010 data 173, 164, 2 ,133,145, 88, 96,120,
1020 data 145, 201, 2 ,240, 16,141,164, 2,
1030 data 144, 141, 163, 2, 169, 165, 133, 144,
1040 data 2 ,133,145, 88, 96, 85,228,165,
1050 data 201, 13,208, 62,165,167,208, 58,
1060 data 254, 1,133,251,162, 0,134,253,
1070 data 0, 2 , 1 6 8 , 2 0 1 , 32,240, 15,230,
1080data 165,253, 4 1 , 3,133,254, 32,236,
1090 data 198, 254, 16, 249, 232, 152, 208, 229,
1100 data 251, 4 1 , 15, 24 ,105 ,193 ,141 , 0,
1110 data 165,251, 74, 74, 74, 74, 24,105,
1120 data 141, 1,128,108,163, 2,152, 24,
1130 data 251, 133, 251, 96

VIC/C64 VERIFIZER

10 rem* data loader for ' 'verifizer'' *
15 rem vic/64 version
20cs = 0
30 for i = 828 to 958:read a:poke i.a
40 cs = cs + a:next i
5 0 :
60 if cs<>14755 then print' ' * * * » * data error »***<
70 rem sys 828
80 end
100:
1000 data 76, 74,
1010 data 252,141,
1020 data 3,240,
1030 data 251, 169,
1040 data 3, 3,
1050 data 0,160, 0,189, 0, 2,240
1060 data 32,240, 15,133, 91,200,152
1070 data 133, 90, 32,183, 3,198, 90
1080 data 232, 208, 229, 56, 32,240,255
1090 data 32 ,210 ,255,169, 18, 32,210
1100 data 89, 4 1 , 15, 24,105, 97, 32
1110 data 165, 89, 74, 74, 74, 74, 24
1120 data 32 ,210 ,255 ,169 ,146 , 32,210
1130 data 32 ,240 ,255 ,108 ,251 , 0,165
1140 data 101, 89,133, 89, 96

': end

144
165
165
169
217
173
189
253

2
165
128
193
101

3, 165, 251, 141,
3, 3, 96,173,

17, 133,252, 173,
99 ,141 , 2,
96, 173, 254,

2
3
2

3, 169
1, 133

3,
3,
3.
3.

89,
, 22,
, 41 ,
, 16,
, 169,
, 255,
,210,
, 105,
, 255,
, 9 1 ,

': end

165
201
133
141
162
201

3
249

19
165
255

97
24
24

VIC/64 Double Verifizer Steven Walley, Sunnymead, CA

When using 'VERIFIZER' with some TVs, the upper left corner of the
screen is cut off, hiding the verifizer-displayed codes. DOUBLE VERI
FIZER solves that problem by showing the two-letter verifizer code on
both the first and second row of the TV screen. Just run the below
program once the regular Verifizer is activated.

The Transactor November 1987: Volume 8, Issue 0 3

KM
BC
Dl

GD
IN
EN
KG
KO
FM
LP

100 for ad = 679 to 720:read da:poke ad,da:next ad
"MOsys 679: print: print
120 print' 'double verifizer activated' ':new
130 data 120, 169, 180,141, 20, 3
140 data 169, 2 , 1 4 1 , 21 , 3, 88
150 data 96, 162, 0,189, 0,216
160 data 157, 40,216,232,224, 2
170 data 208, 245, 162, 0, 189, 0
180 data 4,157, 40, 4 ,232,224
190 data 2,208,245, 76, 49,234

VERIFIZER For Tape Users Tom Potts, Rowley, MA

The following modifications to the Verifizer loader will allow VIC and 64
owners with Datasettes to use the Verifizer directly (without the loader).
After running the new loader, you'll have a special copy of the Verifizer
program which can be loaded from tape without disrupting the pro
gram in memory. Make the following additions and changes to the VIC/
64 VERIFIZER loader:

NB 30 for i = 850 to 980: read a: poke i,a
AL 60 if cs<>14821 then print' ' • • • • • da ta e r ro r * * * * * ' ' : end
IB 70 rem sys850 on, sys853 off
— 80 delete line
— 100 delete line
OC 1000 data 76, 96, 3 ,165 ,251 ,141 , 2, 3,165
MO 1030 data 251, 169,121,141, 2, 3,169, 3,141
EG 1070 data 133, 90, 32,205, 3,198, 90, 16,249
BD 2000 a$ = ' 'verifizer.sys850[spacej''
KH 2010 fo r i = 850 to980
GL 2020 a$ = a$ + chr$(peek(i)): next
DC 2030 open 1,1,1,a$: close 1
IP 2040 end

Now RUN, pressing PLAY and RECORD when prompted to do so (use a
rewound tape for easy future access). To use the special Verifizer that
has just been created, first load the program you wish to verify or
review into your computer from either tape or disk. Next insert the tape
created above and be sure that it is rewound. Then enter in direct
mode: OPENLCLOSEl. Press PLAY when prompted by the computer,
and wait while the special Verifizer loads into the tape buffer. Once
loaded, the screen will show FOUND VERIFIZER.SYS850. To activate,
enter SYS 850 (not the 828 as in the original program). To de-activate,
use SYS 853.

If you are going to use tape to SAVE a program, you must de-activate
(SYS 853) since VERIFIZER moves some of the internal pointers used
during a SAVE operation. Attempting a SAVE without turning off
VERIFIZER first will usually result in a crash. If you wish to use
VERIFIZER again after using the tape, you'll have to reload it with the
OPENLCLOSEl commands.

Plus 4 VERIFIZER

Nl
PM
EE
NH
Jl

AP
NP
JC
ID
PL
CA
OD
LP
EK

1000 rem * data loader for ' 'verifizer + 4 ' '
1010 rem * commodore plus/4 version
1020 graphic 1: scnclr: graphic 0: rem make room for code
1030 cs = 0
1040 for j = 4096 to 4216: read x: poke j,x: ch = ch + x: next
1050 if ch<>13146then print' 'checksum error' ': stop
1060 print ' 'sys 4096: rem to enable ' '
1070 print ' 'sys 4099: rem to disable' '
1080 end
1090data 76, 14, 16 ,165,211,141, 2, 3
1100 data 165, 212,141, 3, 3, 96,173, 3
1110data 3 ,201 , 16,240, 17 ,133,212,173
1120 data 2, 3, 133, 211, 169, 39, 141, 2
1130data 3,169, 16,141, 3, 3, 96,165

Dl
LK
GJ
DN
GJ
CB
CB
PE
DO
BA
BG

PK
AK
JK
NH
OG
JP
MP
AG
ID

GF
MG
HE
LM
JA
El
KJ
DH
JM
KG
EF
CG
EC
AC
JA
CC
BO
PD

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

data 20,
data 0,
data 176,
data 240,
data 200,
data 16,
data 165,
data 0,
data 24,
data 0,
data 96

133.208, 162,
2 ,201 , 48,
3, 232, 208,

22 ,201 , 32,
152, 41 , 3,
198.209, 16,
208, 41 , 15,

12, 165, 208,
105, 193,141,
165.210, 24,

0, 160,
144, 7,
242, 189,
240, 15,
133, 209,
249, 232,

24, 105,
74, 74,

1, 12,
101, 208,

0, 189
201, 58

0, 2
133,210
32, 113

208, 229
193, 141

74, 74
108, 211
133, 208

C128 VERIFIZER (40 column mode)

rem * data loader for ' 'verifizer c128' '
rem • commodore c128 version
rem • use in 40 column mode only!
cs = 0
for j = 3072 to 3214: read x: poke j,x: ch = ch + x: next
if ch<>17860 then print ' 'checksum error ' ' : stop
pr int ' 'sys 3072,1: rem to enable ' '
pr int ' 'sys 3072,0: rem to disable' '
end
data 208, 11 ,165,253,141, 2, 3 ,165
data254, 141, 3, 3, 96,173, 3, 3
data 201, 12,240, 17,133,254,173. 2
data 3,133,253,169, 38 ,141 , 2, 3
data 169, 12,141, 3, 3, 96,165, 22
data 133,250, 162, 0,160, 0,189, 0
data 2 , 2 0 1 , 48,144, 7 ,201 , 58,176
data 3 ,232,208,242,189, 0, 2 ,240
data 22 ,201 , 32,240, 15,133,252,200
data 152, 4 1 , 3 ,133 ,251 , 32,135, 12
data 198, 251, 16,249,232,208,229, 56
data 32,240,255,169, 19, 32 ,210 ,255
data 169, 18, 32,210,255,165,250, 41
data 15, 24,105,193, 32 ,210,255,165
data 250, 74, 74, 74, 74, 24 ,105,193
data 32,210,255,169,146, 32 ,210 ,255
data 24, 32, 240, 255, 108, 253, 0, 165
data 252, 24, 101, 250, 133, 250, 96

B128 VERIFIZER Elizabeth Deal, Malvern, PA

1 rem save' '@0:verifizerb128' ',8
10 rerm data loader for ' 'verifizer b128 ' ' *
20 cs = 0
30 bank 15:for i = 1024 to 1163:read a:poke i,
40 cs = cs + a:next i
50 if cs<>16828 then print' ' • • data error * * "
60 rem bank 15: sys 1024
70 end
1000 data 76, 14, 4 ,165,251,141,130,
1010data141, 131, 2, 96,173,130, 2,
1020 data 17 ,133 ,251 ,173 ,131 , 2,133,
1030 data 141, 130, 2,169, 4 ,141 ,131 ,
1040 data 1, 72,162, 1,134, 1,202,
1050 data 233, 32,118, 4 ,234,177,136,
1060 data 32, 240, 15, 133, 235, 232, 138,
1070 data 234, 32,110, 4,198,234, 16,
1080 data 230, 165, 233, 4 1 , 15, 24,105,
1090 data 208, 165, 233, 74, 74, 74, 74,
1100 data 141, 1,208, 24,104,133, 1,
1110 data 165, 235, 24, 101, 233,133, 233,
1120 data 164, 137, 133, 133, 132,134, 32,
1130 data 32, 78,141,165,133, 56,229,
1140 data 170, 170, 170, 170

: end

2, 165, 252
201, 39,240
252, 169, 39

2, 96,165
165, 27,133
240, 22,201

4 1 , 3,133
249, 200, 208
193,141, 0
24, 105, 193

108,251, 0
96, 165, 136
38, 186, 24

136,168, 96

The Transactor November 1987: Volume 8, Issue 0 3

Got an interesting programming tip, short routine, or an unknown bit of
Commodore trivia?Send it in - if we use it in the Bits column, we'll credit you in

the column and send you a free one-year's subscription to The Transactor

Ribbon Rejuvenation Murray Kalisher
Santa Barbara, CA

Most of today's popular dot matrix printers use easily-
replaceable ribbon cartridges. These usually contain a long
continuous loop of nylon ribbon folded and "crunched" inside a
plastic cartridge. One short section of the ribbon is exposed to
the dot matrix print head and the ribbon is moved in one
direction continuously as printing occurs. If you remove a worn
cartridge you may notice that usually only the upper half of the
ribbon has been used. Certain types of cartridges allow in
creased ribbon life by " f l ipp ing" the ribbon internally so that
both top and bottom halves are used. For cartridges where this
is not the case, you can do it yourself without too much trouble,
and double your ribbon life.

First notice the direction in which the ribbon travels by turning
the winding knob located at the top of the plastic case. Loosen
the ribbon a bit by pull ing on it and give it a half twist to reverse
the top and bottom edges. Place the twisted section of ribbon
over the plastic guide closest to where the ribbon enters the
cartridge and turn the knob to remove the slack in the r ibbon.
Now keep turning the knob to pull half of the "twist" into the
cartridge. Once it's inside you just keep turning the knob for
perhaps 10 or 15 minutes until the twist comes out the other end
of the cartridge and the ribbon is completely untwisted again.
Now notice that the unused half of the ribbon is at the top edge.
You now have essentially a "new" ribbon!

This trick wi l l not work wi th carbon fi lm type ribbons because
the carbon wi l l be on the wrong side of the f i lm if you twist it. I
tried this trick with the ribbon for my Citizen printer, which is a
standard Epson MX-80 ribbon, and it works great!

CAUTION! Dean Rouncville
Athabasca, Alberta

There is an easy way to destroy a BASIC program in memory,
one that I found out in a most unpleasant manner. When
entering a line in a long program, there is a short delay before
the cursor comes back, whi le the interpreter re-chains the
program line links. On very long programs, this delay cart be
several seconds long. If you interrupt this process by hitting
RUNSTOP/RESTORE before the cursor comes back, your pro
gram wil l be in quite a mess, as the rechaining process was not
completed. Try LISTing a program after a RESTORE in such a
circumstance and you'l l see. Sometimes you can get out of the
mess just by re-typing the line you just entered; other times,
repairing the damage could be considerably more difficult than
that.

I hope this warning wi l l save someone the agony of losing two
hours of programming time, as I did.

Defaults Amir Mit-hail
Wi l low dale, Ontario

The need to save default data for a program arises many times.
To do it, one need not set up a sequential file to store the default
data. Here is an elegant solution which provides 255 bytes of
data storage (enough for 50 top scores in a game!). As a bonus,
programs may be loaded and then saved on another disk - the
defaults wil l automatically be saved with the program!

First a little theory. When you load a program, the last track and
sector used is stored at 24-25 ($ 18-$ 19) in the 1541. The idea is
to retrieve this information from the drive for later use, and load

Unused V2 in the default data from that sector.

The Transactor 6 November 1987: Volume 8, Issue 0 3

Since that last sector has just been loaded, then one need not tell
the drive to read it again - all the information is there in the
drive's buffer that was just used! However, the track and sector
should be read from drive memory since the user may wish to
change the default data later on.

A demonstration program follows that clearly shows how this
technique can be used. However, before you run it you must add
a data block. First type in the program and save it as "demo".
Next type in the following in direct mode:

open5,8,5,"demo,p,a": for j = 1to254
:print#5,chr$(j); :next:close5

Now load the program and run it! Warning: if you want to edit
the program, remember to create another data block.

LP
GE
CA
EO
GK
PI

GJ
FE
GA
HJ
DM
FK
GJ

C C
M D
DO
MG

EE
KB
PA
LD
GP
LO
ED
FJ
AL
KE

10 rem * default d e m o — July 1987
20 r e m * by amir michail
30 r e m * saves and reads default values
40 r e m * f rom last b lock of p rogram
50 :

100 z$ = chr$(0): open 15,8,15
110 o p e n 2,8,2 , -r
120 rem read values from disk buffer
130 pr int#15,"m-r"chr$(24)chr$(0)chr$(2)
140 get#15,t$,s$: t = asc(t$ + z$):s = asc(s$ + z$)
150 p r i n t # 1 5 , , b - p , ; 2 ; 2
170 ge t#2 ,c1$,c2$,c3$
180 poke53281 ,asc(c1 $ + z$) :poke53280,

asc(c2$ + z$) :poke646,asc(c3$ + z$)
195 c lose2: c lose15
210 print , ' change color defaults";
220 input k$:if k$ = "n" then 320
230 input "background, border, text colors:";

c1 ,c2 ,c3
240 p o k e 5 3 2 8 1 , c 1 : poke53280,c2: poke646 ,c3
250 o p e n 15,8,15: open2,8,2,"#"
260 rem write values to last sector
270 pr in t#15,"b-p" ;2 ;2
280 pr int#2,chr$(c1)chr$(c2)chr$(c3);
290 print#15,"u2";2;0;t;s
300 print "done!"
3 1 0 c l o s e 2 : c lose15
320 print "program can start f rom this point."
330 e n d

P e e k - a - P a g e Hardy Moore
Bridgewater, MA

One way to read a page from disk memory is to enclose a
memory read and a get* within a loop and execute it 256 times.
Here is a quicker approach:

10 o p e n 15,8,15
20 pr int#15,"m-r"chr$(lo)chr$(hi)chr$(0)
3 0 for i = 0 to 255
40 ge t#15 ,b$

50 print i;asc(b$ + chr$(0))
60 next i

The first two parameters of the memory-read command specify
the starting address in drive memory, and the third parameter is
the number of bytes to read. Although zero seems like a curious
value to use, it actually causes the drive to supply 256 bytes due
to the counting algorithm used by DOS.

Since the "m-r" command precedes the loop, there are 255 fewer
commands to send across the serial bus and have the drive
execute.

File Hider Michael Bone
St rat ha 1 by n, South Australia

Here's an easy way to hide files so that they won't show up in a
directory. This short program wil l hide every file in the directory
starting from the one you specify. You can still load the "invisi
ble" files, and you can load the first hidden file using the
filename "??blocks free* ' .

10 input "hide files from";a$
20 open 1,8,15
30 print#1,"r0:" + chr$(20) + chr$(20) + "blocks free"

+ chr$(0) + chr$(0) + chr$(0) + " = " + a$
40 close 1

To get the directory back to normal, just rename the file back
again, like this:

p r in t#1 , " r0:o ldname = " + chr$(20) + chr$(20)
+ "blocks free" + chr$(0) + chr$(0) + chr$(0)

Basic Bugs

More on the VAL Bug

In Volume 8 Issue 1, we reported on an "Obscure C-64 VAL
bug" and the problems it could cause with interrupt-dr iven
programs. In a nutshell, it happened like this: the VAL function
would put a zero at the end of the string being evaluated, call a
subroutine to evaluate the null-terminated string, then replace
the zero wi th what was there originally. The bug was that an
interrupt routine starting right above string storage would get
stepped on if a VAL was performed on the first string created in a
BASIC program, and bomb out if it was executed while the VAL
was being performed.

Recently, Larry Phillips of Vancouver, BC, brought another
manifestation of this bug to our attention, one that is easier to
reproduce. For a dramatic demonstration, try entering this
program:

10 a$ = "4e99": print val(a$): rem this will d isappear
20 rem but this won ' t

The Transactor November 1987: Volume 8, Issue 0 3

RUN the program (you'll get the message "overflow error in
10"), then LIST it. You wi l l notice that BASIC took the liberty of
munching part of line 10, as predicted by the REM statement.
Everything after the "4e99", including the closing quote, is
wiped out.

The reason lies in another, related, bug in VAL. If an error occurs
in the evaluation of the string, like the overflow error in this
case, the zero that was stored at the end of the string is never
replaced by the original contents of that location. Since a string
defined in a BASIC program exists as a pointer to the program
text itself, VAL is actually putting that zero right smack into your
BASIC code! If VAL bombs, you've got a l ine-terminating zero
sitting in your program to make things mysteriously disappear.

This bug won't often be a problem, but it is interesting to note
that a seemingly innocent- looking bit of code can be self-
destructive. The same problem wil l not occur on a CI28 ,
because the siring does not exist as a pointer to BASIC code, but
is copied into string storage in high memory along with the
dynamically-defined strings.

Multiply Bug Dave Dixon
Vancouver, BC

Here's another BASIC bug that shows up on the 64, but is f ixed
on the 128. This one is in the multiply routine. Try this:

print 8388608 .88 * 1
print 1 * 8388608.88

And see what you get.

LIST During a Program Jason Dorie
Ft. McMurray, Alberta

As you may know, a LIST command in a program wi l l end it
right after the LIST is finished. This line takes care of that:

10 poke 768 ,174 : poke 769,167: list
: poke 768 ,139 : poke 769,227

Line ranges may be specified wi th the LIST command as usual.

Inside View Scott Gray
New Bloomfield, MO

Have you ever wondered what your computer might see from
the other side of the screen? Well, this program wi l l show you
just that - it displays the screen just as if you were looking at it
from behind. What's more, you can program and otherwise
operate your 64 while enjoying this view; any BASIC program
that does not use machine language subroutines or an alternate
character set wi l l work fine wi th Inside View, though it w i l l be
slowed down a bit.

This program really has no practical value; it just serves to
demonstrate what weird and wonderful things the C64 is capa
ble of.

It's easy to toggle between the normal screen and the reversed
screen:

normal : POKE 53272,21: POKE 56576,151
reverse : POKE 53272,37: POKE 56576,148

Have fun!

LO
GE
NB
IE

J M
01
H N
ME
DP
GB
EA
HF
NH
JP
NB
OC
KA
LM
JA
HA
IB
PA
FP
OP
HF
OD
M B
MC
KP
HB
HA
IC
LD
HC
PC
CB
FD
CA
FE
KA
A B
CD
HB
DC
FG
M B
JB

1 rem *
2 rem * *
3 rem *
4 rem *
5 rem *
6 rem *
7 rem *
8 rem *
9 rem *

inside view by scott gray

the view that your computer
sees f rom the other side of

the screen

*
*
*
*

* *
10 for x = 49152 to 49466
20 poke x,a:c = c + a:next
30 if c < > 4 3 1 3 5 then print
40 sys 4 9 1 5 2 : e n d
1000 data 169, 000 , 141
1001 data 133, 253 , 168
1002 data 169, 048 , 133
1003 data 254 , 1 7 7 , 2 5 3
1004 data 160, 007 , 006
1005 data 016 , 249 , 165
1006 data 2 5 1 , 2 0 0 , 2 0 8
1007 data 254, 1 6 5 , 2 5 4
1008 data 169, 055 , 133
1009 data 014 , 220 , 120
1010 data 133, 0 0 1 , 1 6 9
1011 data 253 , 168, 169
1012 data 208 , 1 3 3 , 2 5 4
1013 data 200 , 208 , 249
1014 data 165, 254 , 201
1015 data 0 0 1 , 009 , 004
1016 da ta 1 4 8 , 1 4 1 , 000
1017 da ta 024 , 208 , 120
1018 da ta 003 , 1 6 9 , 1 9 2
1019 da ta 096 , 1 6 9 , 0 0 4
1020 data 133, 254 , 169
1021 data 2 5 1 , 168, 162
1022 data 157, 000 , 200
1023 data 040 , 200 , 185
1024 data 200 , 1 8 5 , 1 2 0
1025 data 185, 160, 004
1026 data 200, 0 0 4 , 1 5 7
1027 data 004, 157, 240
1028 data 157, 024 , 201
1029 data 064 , 2 0 1 , 1 8 5
1030 data 2 0 1 , 185, 144
1031 data 185, 1 8 4 , 0 0 5
1032 data 224 , 005 , 157
1033 data 006 , 1 5 7 , 0 0 8

:read a

"error! ":stop

014, 2 2 0 , 1 3 3
1 6 9 , 0 5 1 , 1 3 3
252, 169, 208
1 3 2 , 0 0 2 , 133
003, 1 0 2 , 0 0 4
004, 1 6 4 , 0 0 2
232, 230, 252
2 0 1 , 2 2 4 , 208
0 0 1 , 169, 001
165, 0 0 1 , 0 4 1
000, 1 3 3 , 2 5 1
048, 1 3 3 , 2 5 2
177, 2 5 1 , 145
230, 252, 230
224, 208, 239
1 3 3 , 0 0 1 , 0 8 8
2 2 1 , 169, 037
169, 134, 141
1 4 1 , 0 2 1 , 0 0 3
133 ,252 , 169
000, 133, 253
039, 185, 000
1 8 5 , 0 4 0 , 0 0 4
0 8 0 , 0 0 4 , 157

004, 157, 120
157, 1 6 0 , 2 0 0
200, 200, 185
200, 1 8 5 , 0 2 4
1 8 5 , 0 6 4 , 0 0 5
104, 005 , 157

005, 157, 144
157, 1 8 4 , 2 0 1
2 2 4 , 2 0 1 , 185
202, 185, 048

, 251
, 001
, 133
, 003
, 136
, 145
, 2 3 0
, 222
, 141
, 251
, 133
, 169
, 253
, 2 5 4
, 165
, 169
, 141
, 0 2 0
, 0 8 8
, 200
, 133
, 004
, 157
, 080
, 2 0 0
, 185
, 240
, 0 0 5
, 157
, 104
, 201
, 185
, 008

006

The Transactor 8 November 1987: Volume 8, Issue 0 3

CF
DE
EE
LD
CE
OC
BE
ID
JF
LC
AG

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

data 157,
data 088,
data 202,
data 185,
da ta 248,
data 007,
da ta 157,
da ta 112,
data 203,
data 200,
data 1 5 1 ,

048, 202,
202, 185,
185, 168,
208, 006,
006, 157,
157, 032,
072, 203,

203, 185,
185, 192,
202, 192,
192, 076,

185, 088 ,
1 2 8 , 0 0 6 ,
006, 157,
157, 208 ,
248, 202 ,
203, 185,
185, 112,
1 5 2 , 0 0 7 ,

007 , 157,
040 , 240 ,
049 , 234 ,

006 , 157
157, 128
168, 202
202 , 185
185, 032
0 7 2 , 007

007 , 157
157, 152
192, 203
003 , 076
078 , 000

Mobile BASIC Mark Schreiner
Overland Park, KS

The short program below enables you to move the BASIC area
anywhere in the Commodore 64's memory. Answer the prompts
with the starting and ending addresses of BASIC'S new location
and the machine wi l l appear to be reset but the "BYTES FREE"
message wi l l reveal that you are in your new zone.

Moving BASIC opens up some interesting possibilities. Try 828-
1023 (the cassette buffer) and 49152-53247 (the free memory
not contiguous with the normal BASIC workspace). You can now
load in machine language programs and other files (using the
",8,1" non-relocating load option) that load into the normal
BASIC area. With BASIC moved, you may use a BASIC program
to examine the contents of the normal BASIC area.

Make sure you save this program before running it - when you
move BASIC, the program won't exist in the new area and you'l l
lose it. Just re- load the program in the new area if you want to
re-locate again.

MA
Nl

OH
D D
OF
CE
DE
GK

10 for i = 0 to 18: read a: poke 828 + i,a: next
20 input"start";bs: poke 831 ,int(bs/256)
30 poke 829,bs-(in t (bs/256)*256)
40 input"end";be: poke 839, int(be/256)
50 poke 837,be- (in t (be/256)*256) :sys828
60 da ta 162, 0, 160, 0, 24 , 32 , 156, 2 5 5
70 data 162, 0, 160, 0, 24 , 32 , 153, 2 5 5
80 data 1 0 8 , 0 , 160

Bytes Free George Borsuk
Brantford, Ontario

Here's a short, relocatable machine language routine to display
the number of BASIC bytes free. Unlike BASIC'S FRE function,
this routine always prints the number of bytes free properly, as a
positive number. It is based on a ROM routine that is executed as
part of the power-up sequence.

It subtracts the bot tom-of-memory pointer at $2D (top of your
program) from the top-of-memory pointer at $37, then uses the
ROM routine at $BDCD to print the resulting value. Finally, the
"BASIC BYTES FREE" message stored at $E460 is printed by the
print string routine at SAB IE.

You can use this program as-is by just SYSing to it f rom BASIC,
or include the code in your own ML programs. Both BASIC
loader and assembler code are listed below:

1 r e m * bytes free program *
2 r em* by geo rge borsuk *

10 f o r i = 49152 to 49172
20 read a: poke i,a: c h = ch + a
30 next i
40 if c h < > 2 6 2 4 then p r in fda ta error!!!": stop
50 print"* * sys 49152 will g ive bytes free"
60 data 165, 55 , 5 6 , 2 2 9 , 4 5 , 1 7 0 , 1 6 5
70 data 5 6 , 2 2 9 , 46 , 3 2 , 2 0 5 , 1 8 9 , 1 6 9
80 data 9 6 , 1 6 0 , 2 2 8 , 32, 3 0 , 1 7 1 , 96

The machine code:

Ida $37
sec
sbc $ 2 d
tax
Ida $38
sbc $2e
jsr $ b d c d
Ida #$60
Idy #$e4
jsr $ab1e
rts

Getting The Boot

; top of memory, low

;subtract bo t tom, low

;memtop high

;subtract bot tom high
;print number in a,x
;point to string
; at $e460
; print message
;return to BASIC or caller

Chris Miller
Kitchener, Ontario

Ever wish you could load in machine language or data files into
your C64 without the danger of crashing out of BASIC with a
FILE NOT FOUND error, or having your program re- run from
the top after the load? Al l it takes is a couple of SYS calls and a
poke!

10 rem boo t to load 3 programs f rom basic
20 sn = 57812 : rem set name
30 Id = 65493 : rem kernal load
40 a = 780 : rem .a register params
50 sys s n ' p r o g l " , 8 ,1 : poke a,0: sys Id
60 sys sn"prog2" ,8 ,1 : poke a,0: sys Id
70 sys sn"prog3" ,8 ,1 : poke a,0: sys Id
80 rem cont inue with basic

The flow of BASIC is not disturbed by these loads and if an error
occurs, you can handle it yourself without the program bomb
ing. Just check the disk error after each load with something
like:

o p e n 15,8,15: input#15,a,b$,c ,d : c lose 15
: if a then print b $ (error)

Use this technique f o r " . . . ,8 ,1" loads only.

You can also use this in direct mode to load code or data without
disturbing BASIC'S start-of-variables pointer.

The Transactor 9 November 1987: Volume 8, Issue 0 3

Quick File Copier T.A. Sweeney
128 Bits Ridgefield, CT

Booting Up John Chism Here's a short program to copy program files from one disk to
Your Mode Menu Knoxville, TN another. It simply automates a BLOAD/BSAVE process, al lowing

program files to be copied at a high speed while maintaining
Puttering around the CI 28 Programmer's Reference Guide, I their original load address. It was written in response to prob
found some data on page 447 that, when entered into the boot lems I had with the file copy feature of the DOS shell.
sector (Track 1 sector 0) of a disk, purported to provide the user,
upon booting, wi th a mode menu for: M N 100 rem p rog ram file copier 128 tim sweeney

CH 110 poke 58,5 :rem reserve space in bank 1
1)C64 BASIC A L 120 clr
2) C I 28 BASIC GC 130 p r i n f p r g file cop ie r '
3) C I 2 8 MONITOR FM 140 pr in f inser t master disk, press key": getkey a$

IO 150 input'f i le name";f l$: dclear
This is not quite so. The ML routine should begin on the 9th AK 160 b load (fl$),b1
byte, not the 12th, and the loop waiting for input is not properly PH 170 sa = peek(172) + peek(173)*256 :rem get

executed. start ing address
IM 180 ea = peek(174) + peek(175)*256 :rem get

The following program is a properly working version, and writes ending address
the code to the boot sector of a disk. But be forewarned that it KP 190 pr in f inser t target disk, press key": getkey a$
should be installed on a fresh disk, or on one that you know IF 200 dclear: bsave (fl$),b1 ,p(sa) to p(ea)
doesn't have track 0 1 , sector 00 allocated. FD 210 pr in t 'copy comp le ted , another? y";

: input"[3 left]";a$
Just run this program on the fresh disk to install the boot menu. N C 220 i ta$ = y then 120
In the future, whenever you boot with that disk in the drive, the DG 230 poke 58,255: clr :rem restore bank 1
above menu wi l l come up and allow you to make a selection.

BN 100 rem* select on boot FAST GULP M. Garamszeghy
DO 110 rem* fix for p g . 447 of c128 prg. gu ide Toronto, Ontario
HE 120 rem* track 1 sector 0 must not be a l located
NC 140 for i = 1 to 100 With a few simple modifications, the GULP.COPY program

OG 150 read byt: cs = cs + byt: w$ = w$ + chr$(byt) presented in Transactor Vol. 7, Issue 06 (page 52) for the 1571

EK 160 next and C-128 (1571 RAM disk copier), can be doubled in speed.

AP 170 if c s < > 6 9 6 5 then print "data error": e n d The modifications described below allow the program to copy a

IM 180 open 15,8,15,"iO" single sided disk in just over four minutes and a double sided in

KA 190 o p e n 8 , 8 , 8 , - # " about seven and a half. The modifications to the main BASIC
JA 200 p r in t#15 , 'b -p " ;8 ;0 listing on page 53 are as follows:
JP 210 pr int#8,w$ „

LC 220 pr int#15,"u2";8;0;1;0 1121 slow: o p e n 9 , 8 , 9 , ' # 3 '

LG 230 pr in t#15,"b-a" ;0;1;0
DH 240 print ds$: c lose 8: c lose 15 1181 pr int#15,-u0 - chr$(8)chr$(4)

BP 250 data 67 , 66, 77, 0, 0, 0, 0, 0
Nl 260 data 0, 3 2 , 1 2 5 , 2 5 5 , 13, 83, 69, 76 1261 pr int#15, 'u0"chr$(8)chr$(4)

CL 270 data 69 , 67 , 84 , 32, 77, 79, 68, 69 1262 restore 2000
FH 280 data 58 , 13, 13, 32, 49, 46 , 32 , 67 1263 of$ = •": for fx = 1 to 29 : read of: of$ = of$ + chr$(of)
GH 290 data 54, 52 , 32 , 32, 66 , 65, 83 , 73 : next
LH 300 data 67, 13, 3 2 , 50 , 46 , 32 , 67 , 4 9 1264 pr int#15,"m-w"chr$(0)chr$(6)chr$(29)of$

PI 310 data 50, 56, 32 , 66 , 65 , 83, 73, 67 1265 pr int#15,-m-e"chr$(0)chr$(6)

CH 320 data 13, 3 2 , 5 1 , 46 , 32, 67, 49 , 50
GN 330 data 56 , 3 2 , 77, 79, 78, 73, 84, 79 1330 pr in tchr$(147) : print " * * d o n e * * " : print#15,"uj": dc lose

CF 340 data 82 , 13, 13, 0, 3 2 , 2 2 8 , 2 5 5 , 2 0 1
CP 350 data 4 9 , 2 0 8 , 3, 76, 7 7 , 2 5 5 , 2 0 1 , 50 2000 data 1 2 0 , 1 6 9 , 1 3 , 1 4 1 , 1 6 9 , 2 , 1 6 9 , 6
M M 360 data 208, 3, 76, 3, 6 4 , 2 0 1 , 5 1 , 2 0 8 2010 data 1 4 1 , 170, 2, 88 , 96, 7 2 , 1 6 5 , 0

LF 370 data 235, 76, 0 , 1 7 6 2020 data 2 0 1 , 160, 208 , 4 , 69 , 0 , 1 3 3 , 0
2030 data 104, 7 6 , 2 2 2 , 1 5 7 , 0, 0

The Transactor l O November 1987: Volume 8, Issue 0 3

The reasons for the changes are as follows:

(1) line 1121 forces the C-128 into slow mode (because direct
memory access wi l l not work properly if the C-128 is in
FAST mode) and reserves direct access disk buffer * 3 .

(2) lines 1181 and 1261 use the burst mode "set sector inter
leave" command to an optimum interleave of 4. This speeds
up both disk reads and writes.

(3) lines 1262 to 1265 set up and execute a short program in the
1571 's buffer # 3 . This program turns off the verify after write
feature by patching into the 1571 's interrupt routine allowing
much greater write speeds. (Each time the 1571 writes a
sector, it immediately reads it back in again to verify it. This
causes a time delay of one disk revolution or about 0.3
seconds of wasted time for each sector written).

(4) The pr int # 15,"uj" in line 1330 replaces an "i0" in the older
version. The 'u j " wi l l reset the default interrupt vectors in the
1571 after the copying has finished.

(5) lines 2000 to 2030 contain the object code for the 1571
program. The source code is as follows:

sei
Ida
sta
Ida
sta
cl i
rts

#<wri teof f
$02a9
#>wri teof f
$02aa

writeoff
pha
Ida $00
c m p #$a0
bne con t inue
eor $ 0 0
sta $ 0 0

cont inue = *
pla

j m p $ 9 d d e

;disable interrupts ,
;low byte of new interrupt routine
;save in interrupt vector lo byte
;new hi byte
;and save also
;restore interrupts

;new interrupt handler
;save accumulator
;get job code for buf fer#0
;check for "verify sector"
;no, then go back to no rma l
;yes, then cance l it
;and save aga in

;retrieve accumulator, a n d
;go to normal interrupt handler

This short machine code program can be placed in any of the
1571's buffers which are not currently used by DOS. Be careful
when using it on your own because failure to reset the interrupt
pointer to its default value after use wi l l cause the 1571 to lock
up or go hay wire if the new interrupt routine were to become
corrupted by being overwritten by DOS.

Built-in Crash
Protection

Mike Hartigan
Lockport, NY

A l i t t le-known and even less documented feature of the C I 28 is
a bui l t - in way to recover from crashes without losing your BASIC
program! If a program locks up, it can generally be saved by
holding down the RUN/STOP key while simultaneously press
ing the reset button. This wi l l cause the C I28 to reset, but

instead of initializing BASIC, it wil l enter the bui l t - in monitor.
The interesting part is that zero page has been left virtually
untouched, including the pointers to your BASIC program! Now
enter X <RETURN> to exit the monitor, and Voila! Your BASIC
program is there, right where you left it! This trick wi l l not work
if you lost your program to a NEW command, since the pointers
have already been reset. In this case, a more traditional un-new
technique must be employed.

Common Memory Tim Fleehart
T u r n water, WA

The C128's MMU (Memory Management Unit) has a register
that controls the amount of "shared" or common memory
present in both the 128 and Z80 modes. The common memory
is always bank 0. This register is located at $FD506 and it works
like this:

Binary value
of low nybble

Shared memory configuration

OOxx No shared memory
Olxx Share low memory only
lOxx Share high memory only
l l x x Share in both high and low memory

xxOO Share 1 k bytes in each section
xxOl Share 4k bytes in each section
xx lO Share 8k bytes in each section
x x l l Share 16k bytes in each section

Example: storing $0F (%00001111) in $FD506 results in 32k of
scared memory; 16k from $0000 to $3FFF, and 16k from $C000
to $FFFF (excepting, of course, the configuration memory at
$FF00-$FF04).

The purpose of this common memory is to facilitate the stack
and the common storage necessary for program 'house
keeping'. The 8502 requires common low memory for a stack
and zero

Amiga Bits

Customizing
CLI Windows

Bryce Nesbitt
Berkely, CA

When a new CLI is started from the Workbench, the window
always comes up in the same, fixed location. If you do not like
the position or size you are out of luck. From the CLI a bit more
control is possible: a window specification such as "CON:0 /1 /
640/200/Old CLI" can be typed after the NEWCLI command.
But that's a lot of typing and is useless for Workbench users.
Changing the defaults allows both CLI and Workbench users to
get that custom look without all the hassle.

The modification is easy, wi th one exception: a binary file editor
is not part of the software provided to users wi th their Amiga.
The rest of this discussion wi l l assume that you have already

The Transactor 11 November 1987: Volume 8, Issue 0 3

downloaded, or otherwise obtained the program "filezap". The
techniques described can also be applied to other editors. (The
text editor "Aedit" by Joe Bostic, for example, allows editing of
binary files.)

Depending on which CLI startup file you wish to modify, use one
of these commands to start filezap:

CLI > run fi lezap c:newcli
Workbench > run fi lezap sys:system/cli

Now page forward wi th the < F > command, keeping a sharp
lookout for a string that looks something like "CON:0/50/640/
80/New CLI'. This defines the characteristics of the new CLI
window:

"CON:" means open a console window - leave this part alone.
The first number is how many pixels from the left edge the
window should start. The seconds number is how many pixels
from the top. The third is the width in pixels, and the final one is
the height. The "New CLI " wi l l be used as the title of the
window.

Use filezap's < * > command to change the defaults. Keep in
mind that the window must fit on the screen, and that you can't
change the total length of the string! If you make a mistake, use
the < R > command to recover. When ready, use the < U >
command to update the file, and press < C T R L X C > to exit.

Now your CLI window wi l l come up where and how you like it!

Titles
in AmigaBasic

John Chen
Clifton, NJ

It's difficult to change the title of a window in AmigaBASIC after
the window has been opened, and impossible to name the
screen title. This program uses a system library routine to
circumvent this BASIC weakness. For the program to work, the
"intuition.bmap' file has to be in the "libs:" directory on the
Workbench disk or in the same directory the program is stored
in. You can get the ".bmap" file from the public domain or, if you
have the "Amiga Enhancer k i t " (the 1.2 system software up
grade), you can use the "ConvertFD" program on the Extras disk
(in the "BasicDemos" directory) to roll your own .bmaps from the
files in the "FD1.2" directory.

LIBRARY "intuition.library"
ws& = WINDOW(7) ' pointer to a Window structure
INPUT'Window Title";wt$
INPUT'Screen Title";st$
wt$ = wt$ + CHR$(0) 1 for no title set
st$ = st$ + CHR$(0) 1 str ing to chr$(0)
CALLSetWindowTi t les(ws&,SADD(wt$) ,SADD(st$))
1 SADD returns the address where the string is stored
LIBRARY CLOSE
END

Easter Eggs

We've seen computers before with secret messages hidden
wi th in their operating systems like Easter eggs: the original PET
had Microsoft's "WAIT 6502,x" joke; the C-128 has its "SYS
32800,123,45,6" incantation that puts up credits and a peacenik
message. The Amiga takes this trend one step further.

First step: Move any windows out of the way that are covering up
the Workbench screen's title bar, and click somewhere on the
Workbench window to activate it. You should see the familiar
"Workbench release. . . " message with the amount of free
memory displayed in the title bar. It is in the title bar that the
secret messages wi l l be displayed.

Now, you'll have to hold down several keys at once for this: wi th
the thumb of your left hand, hold down the left SHIFT and ALT
keys simultaneously, and wi th the thumb of your right hand,
hold down the right SHIFT and ALT keys. Now, with the middle
finger of your left hand, hold down the F l key - all five keys
should be down at this point. Poof! With the flash of a "display
beep", up comes a secret message in the title bar! Now release
F l and hold down F2 instead. You get a new message for each of
the ten function keys.

If you thought getting those messages was a bit tricky, you' l l find
that getting to the next stage of messages is like playing solitaire
twister. First of all, make sure the Workbench window is acti
vated, the title bar is visible, and the Workbench disk is in the
internal disk drive. Your mouse should be placed up against the
right side of the keyboard, close to the Amiga. Also, the mouse
pointer on the screen must be resting over the screen-to-back
re-ordering gadget in the Workbench screen title bar (the
second gadget from the right). To get the mouse and pointer in
these positions, you may have to lift the mouse up and put it
down where you want it. Now you are ready for stage two: first
get the F l secret message displayed as explained above. Now,
wi th all five keys still held down, reach out with the ring finger of
your right hand and eject the Workbench disk from the drive.
Poof! you wi l l see another secret message appear in the title bar.
Now don't move! You are ready for stage three.

Stage three should only be attempted if there are no children
present, and you are not offended by naughty words. While in
the above position (the mouse pointer should still be over the
screen-to-back gadget), reach out to the left mouse button wi th
the little finger of your right hand and hold it down, being careful
not to move the mouse. Now, get this: With the mouse button
still held down, you have to re-insert the disk! Use your r ing
finger for this. After the disk "catches", poof! The naughty
message! Wonder what they mean?

This isn't a joke; it really works, but it can be tricky to do. You
may want to enlist the aid of an assistant to get to stage three.
Another way is to use the program in this issue called "Eventma-
ker" to do the work for you just by typing in a command. The
command to get the secret message is given at the end of the
article.

The Transactor 12 November 1987: Volume 8, Issue 0 3

Glossy paper pricing: I love the way you guys work. You start to
use more expensive glossy paper rather than the thick non-gloss
paper (that is a lot better than glossy), raising the expense for
materials, then you raise your price for subscriptions. I would think
that the extra price for subscribing could go to something more
useful than easily-ripped glossy paper (which I hate!). How about
more articles and projects. How about more mail order products. If
you really need more income, get more ads for non-Transactor
products. Then lower your prices for subscriptions and mail order
items.

I hope you wil l think more heavily about the above.

Steven T. Campbell, Mississauga, Ontario

We don't like increasing the price of a subscription any more than
you like paying it, Steven (which is why the price didn't change for
so long). And strangely enough, we also prefer the old paper, though
not everyone agrees with us. But your assumption that the glossy
paper is more expensive is incorrect - it's actually about I5 per cent
cheaper, which is one reason we changed it. Another reason is that
advertising copy looks better on the coated stock - at least in the
eyes of the advertisers. Your other points are well taken: we are
going after more outside advertising, we will have more mail order
products and, as the advertising starts to build, we also want to
increase the number of pages per issue to accommodate more
articles and projects. Meanwhile, though, we have to stay in
business. . . and we hope you 'II stick around to watch us grow.

One article that interested me in the More Languages issue was
'Blazin' Forth - Everything you wanted to know about Forth (but
were afraid to ask)". I was thrilled to get the Forth system on the
disk, but was disappointed to find no documentation on how to use
it. In the first paragraph of the article, the author stated: "I wrote the
following as an aid to people who might be trying to understand the
source to Blazin' Forth, and it should be considered part of the
documentation for the source files to the system." How can I get the
documentation on how to use it and, if possible, the source files as
well?

David Neto, Toronto, Ontario

Yours is one of a number of inquiries we have received about more
docs for Blazin' Forth, David. Unfortunately, the source and docu
mentation for Scott Ballantyne's superb implementation of Forth are
just too large to distribute ourselves. They are available, though, on
the Commodore programming (CBMPRG) forum on CompuServe. If
you have a CompuServe account (or if you were to get one) you
could also put questions to Scott Ballantyne on-line, if you desire,
as he checks in on our forums fairly regularly. If you (or anyone for
that matter) would like a free CompuServe Intro Pak, please call us.
It contains an account number, a password, and $15 of on-line
time.

Drive head noise abatement: In a letter in your September issue,
Warren Pollans asked for solutions to the problem of head banging
on the destination drive when using fast dual-drive copy program
(Letters, Volume 8, Issue 2).

Blazin' Forth docs: Since discovering your magazine in March, I
have found it to be an excellent source of technical information on
Commodore's computers. I was so impressed by that first issue
(More Languages) that I got a disk and magazine subscription, and
the companion disk to that issue. Unfortunately I missed the
Simulations and Modelling issue, but I haven't been disappointed
since.

I overcome this problem when using Fast Hack'em by pressing F l ,
which changes the source from device 8 to device 9; then I call for a
directory (by pressing 'D') with the source disk in device 9. The
head does not bang during this operation, and the head position is
now known, so copying can proceed without fear of damage to the
head alignment. While on the subject of this particular program,
using the dual file copiers in Fast Hack'em (v3.99) seems to be

The Transactor 13 November 1987: Volume 8, Issue 0 3

impossible between a 1571 (even in 1541 mode) and a 1541.
Solutions, anyone?

Bruce Lloyd, Dapto, New South Wales

The 68010 and commercial disks: The article on the 68010
Amiga (The 32-bit Amiga, Volume 8, Issue 2) raised some concern.
Most purchased software is loaded following Kickstart and has its
own startup-sequence. As I understand it, if one goes for a conver
sion one is faced with modifying the start-up sequence of all owned
software and copying DeciGEL to all disks. Is there any way around
this problem?

Ian Robertson, Belleville, Ontario

Interesting point, Ian. No, we don't know of any way to make
DeciGEL active at boot-up without altering the startup-sequence.
Don't go changing all your disks, though.. . remember that only
source of compatibility problems when you install the 68010 is the
comparatively rare MOVE SR,<EA> instruction. Chances are that
most of the programs you use do not contain this instruction, so
installing DeciGEL won't be required anyway (the worst that will
happen, by the way, is that you 'II get a Software Error caused by the
68010 detecting what, for it, is a privilege mode violation). Also,
many commercial programs can in fact be loaded from either CLI or
Workbench without having to reboot, so you can install DeciGEL
before invoking them. If necessary, copy the ASSIGN and EXECUTE
commands to RAM: (or put your Workbench disk in your external
drive if you have one), put the commercial disk in the internal drive,
and execute a script file like the following:

assign sys: dfO:
assign s: df0:s
assign libs: df0:libs
assign I: df0:l
assign devs: df0:devs
assign fonts: df0:fonts
assign c: df0:c

Now execute the startup-sequence on the program disk, and
chances are the program will load successfully. Failing that, you will
have to change the program disk, but that should be required only
rarely.

Taking Amiga to task: You have been lamenting the supposition
that the Amiga is not selling. I take this as figurative rather than
literal, leaving the implication that the Amiga is not selling as well as
it should, could, or has to to meet expectations. My question to you
is this: how many units should, could, or do you expect the Amiga to
sell to be considered "selling"? My next question is: how did you
arrive at this number and why?

•»For all its technological gimcrackery, the Amiga has some serious
shortcomings. First of all, it's new, and that's bad. The vast,
untapped masses of computer peasants have had an opportunity to
test-drive VIC 20s and Commodore 64s. From the sounds of it, there
aren't too many peasants left out there in the marketplace. The
general level of computer awareness in the population has gone up
considerably since the heyday of the Coleco Adam, TI99 and Radio
Shack CoCo.

Secondly, the operating system is new, and worse, incompatible
with the majority of the installed systems. It's the old 78 rpm vs 33

1/3 rpm syndrome: many people have too much invested to start
from scratch again. So what that LPs have better sound reproduc
tion?

Thirdly, the Amiga is not an open architecture system. It's amazing
what you can do with an Apple or PC and the right add-on cards.
Years from now, those systems wil l be upgraded to virtually match
the latest technology. To upgrade the Amiga becomes an expensive
kludge. Sure, the new Amiga 2000 may correct that, but your lament
didn't cover the new machines, did it?

And finally, the Amiga is not cheap. Let's not compare it to IBM,
though. So few people are buying real IBMs (mostly new clone
manufacturers, I bet) that even IBM became concerned enough to
try and market something different. What about the technofreaks?
Most of them buy Ataris, which are much more reasonably priced,
and then try to make them run like Amigas (Amigae?).

There is a niche for the Amiga, but it's a very small and specialized
one, very similar to the niche that was carved out for a short time by
the Ohio Scientific Challengers. The niche consists of the most
eccentric technofreaks who also happen to have lots of discretion
ary spending power. Commodore created that niche, and empha
sized it with their Andy Warhol/Blondie introduction to the world.
Unless the price comes down, or the available software increases
tremendously, the Amiga may die in that niche, just like the OSI
CI P.

It's tantalizing to think what Jack Tramiel could have done with the
Amiga if his brand of marketing had been followed. Instead, we end
up with arguably the most powerful micro on the market today
being widely seen as having no natural place. It reminds me of the
Cord, which was too advanced for its time, or the Titanic, which
succumbed to its own phantasy.

Are the consumers wrong for not buying it? Are the developers
wrong for not churning out software? Or are our own expectations
wrong? I suspect the latter.

By the way, I don't own an Amiga, simply because I can't afford one.
My Commodore 64 wil l just have to do for a while longer. My OSI
C1P is beyond resuscitation, and available to anyone with a good
story.

John Kula, Victoria, British Columbia

Well, there's enough opinions in that letter to fuel half a dozen long
conversations, John, but for now we 'II have to make do with some
quickie responses to the points you raise. Here we go, one by one. . .

Newness: it's hard to design a new computer that doesn't suffer
from this "defect". The fact that the market is more aware nowa
days than it once was should help the Amiga, not hurt it - one of the
problems we see is that it's hard to appreciate its unique strengths
until you've been around other computers for a while.

Operating system: yes, it's incompatible with everything, though
Commodore has gone to a lot of trouble to make IBM compatibility
available to those who want it. But there is no progress without
change, even if it takes a while, and the switch from 78 to 33 1/3
didn 7 take all that long. Do you have a lot of 78s in your record
collection?

The Transactor 14 November 1987: Volume 8, Issue 0 3

Architecture: we just plain disagree on this one. Though there are
some problems with the expansion interface on the Amiga 1000,
they can be and are being overcome by dozens of hardware
manufacturers. Commodore has been very forthcoming with the
expansion specifications (one of the problems has been that the
specs have continued to evolve after the release of the machine) and
other data relating to the Amiga's internal operation; this is in
contrast with the history of the Macintosh, which truly is a closed-
architecture computer.

Cheap: okay, it's not that cheap. If you want some perspective,
though, look at the early pricing of the Commodore 64, which came
pretty close to the current pricing of the Amiga WOO. By the way,
trying to make an Atari ST run like an Amiga is going to be a
frustrating experience for anyone who tries it. . . sort of like trying to
make your pop-up toaster run like a microwave oven.

Niche: We 'II have to wait on a final answer for this one, but Amiga is
already establishing itself well with artists, video professionals,
musicians and engineers. Top-flight productivity software has been
emerging for a while now, so we should start to see it making
inroads into traditional business circles, especially with the recent
release of the Amiga 2000. Whether the Amiga will make it as a
'home computer' remains to be seen; we still believe that depends a
lot on how well Commodore gets across the point about multitask
ing, which is for us maybe the biggest thing the machine has going
for it.

As for your original question about numbers, it remains to be seen
how far the Amiga can go. What's certain is that it has not been well
marketed, and hence is not well understood by a lot of potential
buyers. When that changes (and indications are that it may change
soon), I guess we'll quit griping.

Mysterious quote mode explained: In a recent Transactor there
was a Bit about how a value greater than 127 in location 646 ($0286)
of the Commodore 64 affects the delete key in quote mode (Bits,
Volume 8, Issue 1). This discovery intrigued me, and so I started
looking around to see what really happens.

The delete routine contains this code:

e777 lda $0286
e77a sta ($f3),y
e77c bpl $e7cb

. . .and it is followed by this code from the routines that handle the
CTRL characters:

e77e ldx $d4
e780 beq $e785
e782 jmp $e697

. . .we follow the jmp, and find:

e697 ora #$80

. . .then a few bytes later

e6a2jsr $ea13

This last instruction is a call to the routine that prints the character
currently in the accumulator.

It appears that the programmers assumed the value in 646 would
always be less than 128, which should be the case considering the
C64 only has 16 colours. Poking a value greater than 127 causes the
branch at $e77c to fail, and the routine falls through into code that is
intended to handle the printing of control characters. The delete
occurs, and the cursor gets bumped back, then the character gets
printed, which explains how the previous character gets corrupted.
After printing the new character, the cursor is back where it started
before the delete. The black hole effect is caused because the cursor
gets moved back. Notice how the character printed reflects the
value of 646.

Nickey MacDonald, Fredericton, New Brunswick

Thanks for the detective work, Nickey. Now if only someone could
come up with a use for this 'mode'...

Guru mail department: Jim Butterfield has passed on to us the
following letter from reader Joel Rubin, who offers the following
comments on Jim's article on secondary addresses and the Kernal
(Secondary Address Bits, Volume 8, Issue I):

1) The Kernal OPEN routine ORA's the secondary address with
*$60, at least on the C64 and CI28 ($FEFD on the 128), so:

Ida #2: Idx #8: Idy #$f: jsr setlfs
. . .is okay.

2) Since registers, unlike Basic file parameters, have no default
value:

Ida #3: Idx #4: jsr setlfs

. . .may well end up opening the printer the wrong way (e.g. if .y
contained 7 going into the routine).

3) You do seem to need ORA *$60 if you use Kernal TALK, LISTEN
et al.

Joel Rubin, San Francisco, California

7b which Jim responds:

Right on all three counts. To give more detail:

1) Earlier Commodore machines did not insert the extra secondary
bits when you called OPEN ($FFC0). Thus, to set a secondary
address 15, you had to LDY *$6F before your call to SETLFS; a
value of *$0F wouldn't work. I write code for a wide variety of
Commodore machines. . . and since it's as easy to 'write in' those
extra bits, I do so and save myself the trouble of needing to recode
when I take it to another machine. On the newer machines (VIC 20
and subsequent), you can let the OPEN routine do the job for you. . .
although it's no extra work to add the bits in your coding, and might
help you remember that they are always a necessary part of the-
working SA.

2) Agreed. As I suggest, if you don't want a secondary address you
should still supply a value of255 to signal 'no SA'.

3) Direct calls to TALK/LISTEN definitely need those bits, as you
say; the system assumes that the SA was set up with the extra $60.
Most users won't need to call TALK/LISTEN. . . they will do less
work by using CHK1N (SFFC6, switch input path) or CHKOUT
(SFFC9, switch output path); then GET ($FFE4, get a character) or

The Transactor 15 November 1987: Volume 8, Issue 0 3

CHROUT (SFFD2, send a character); and finally CLRCHN (SFFCQ
restore input and output default paths).

Jim Butterfield, Toronto, Ontario

More Plus/4 Tech Info: There is another source of technical
information for reader Jim Welch, who was looking for a Plus/4
circuit diagram (Letters, Volume 8, Issue 1).

SAMS Computerfact has complete technical data and schematic
diagrams available for the Plus/4. If they are not available in his
area, they can be ordered from: Tenex Computer Express, P.O. Box
6578, South Bend, Indiana 46660. The product number is 33551,
and the price is $17.95 (US) plus $3.75 shipping and handling.

If anyone has a machine language screen dump program for the
Plus/4 that would work in monitor mode or in regular mode, I
would like to obtain one. Thank you.

P. Wendt, Dodson, Louisiana

tRanzbloopeRs
The Blunderful Mr. Ed: If you typed in Chris Miller's nifty text
editor, Mr. Ed, from Volume 8, Issue 2, may have been disconcerted
to discover that the Verifizer code for line 5530 did not match the
one printed in the magazine. The line in question is:

5530 jsr left ;dim

The Verifizer code given in the magazine was GE, but it should be
OK. No, it shouldn't be okay, it should be "OK". How did the wrong
Verifizer code get into the listing, you ask? We'd sure like to know.

Long Symass Labels: We don't know how many people have
already noticed this, but it seems that all versions of Symass
released so far will not properly handle labels over 8 characters long
(what should happen is that longer labels wil l be accepted, but only
the first 8 characters are significant). This will be fixed in the
upcoming new version of Symass. . . meanwhile, be terse.

Space or Null String: Believe it or not, the typesetting equipment
we use has no character equivalent to the quote (") seen so often in
nearly every program listing. Until recently, the quote had to be
simulated by rotating an inch mark (") counter-clockwise 24 de
grees. But for some reason, the typesetter rotate command crashes
the preview screen that all articles are sent to before actually
typesetting them. This was resolved by using yet another kludge.
The typesetting computer allows variables just like CBM Basic. Al l
quotes were substituted with a variable, and while previewing the
variable was set to the character pair " . Then, when the article was
ready to be typeset, the variable would be re-set to the rotated inch
mark. Often this final step was neglected which is why some listings
appeared with quotes as " instead of ' .

When Attic acquired the COMPUTER font, we found another solution.
This font has a quote symbol, but it looks like this: 1 1. Yechh!
However, in superscripted mode it looks great (") - and it doesn't
crash the preview! Except for one last problem. When there's two
side-by-side (ie. null string) it can appear to some as one space
within quotes. Although it can usually be determined by deduction,

we feel it may have been the source of some program entry trouble,
especially since the Verifizer was designed to ignore spaces. Natu
rally we have a solution for this too; from now on the space between
two quotes side-by-side wil l be "tightened up" so there can be no
question that it means "null string". We hope that problems with
quote marks (which would have been five years old this October)
wil l be eliminated forever.

Now if we could just get CompuGraphics to create a decent looking
uni-width font for program listings.

A few TransBasic bugs: In Letters this issue, we quote from a
letter by Nickey McDonald of Fredericton, New Brunswick, who
gave us the result of his investigations into the "undocumented C64
editing mode" lately reported in Bits. Here we quote him again:

I have typed every TransBasic module and seem to have them all
working, but I found a few bugs along the way. First is some trivia,
but I wondered if anyone else ever noticed: the heading TransBasic
Parts 1 to 8 Summary" never changed after instalment number 8.1
miss TransBasic, and so started to make my own modules and even
to convert other peoples' routines to TransBasic format.

Second is a problem with the TransBasic USE command. Line 7192
should read:

7192 jsr errpgm

. . .and not "jsr errmem" as published. Line 7242 in the same
module causes a problem if you specify a device number. This is
because the line following "ldx device" is a three-byte operation. To
fix this problem, it is a simple matter of changing two lines:

7242 jmp uz4p5
7246uz4p5 stx t2

Third is the Labelled Goto module. The author did not store the
destination line number when calling a line, so if an error should
occur in the called line, the error handler reports the wrong line
number. I made the following modification:

6036 lgot7 Idy #2: Ida ($5f),y: sta $39
: iny: Ida ($5f),y: sta $3a: Ida $5f

Capacitance Meter Line Numbers: This one goes quite a while
back, to the article The Commodore 64 Capacitance Meter, by Jim
Barbarello of Englishtown, New Jersey (Transactor, Volume 7, Issue
4). Back in December Jim sent us a correction, which we promptly
misplaced. .. only to have it turn up again the other day. Here's an
extract from Jim's letter, with our apologies for the delay:

Some letters I have received indicate a problem following the
"Optimizing Performance" instructions (page 32). It seems that
modifying line 110 has no effect.

Upon review of the article, I noticed you renumbered the program,
but did not change the line reference in "Optimizing Performance"!
Please print a correction indicating that the two references to line
110 should have been to line 200.

First-Aid for Programmer's Aid: From the same pile of corre
spondence that yielded Jim Barbarello's correction above comes this
from James G. Rae of Chillicothe, Ohio. Referring to the article

16 The Transactor November 1987: Volume 8, Issue Q 3

Programmer's Aid for the Commodore 128 by Joseph Caffrey
(Transactor, Volume 7 Issue 5), James writes:

The program has three known problems. The first, reverse printing
of the first character on the line in the 40 column mode only looks
bad and causes no real problems.

The second occurs when a program line uses more than one screen
line and one of the additional screen lines starts with a number
(SYS, GOTO, etc) that matches an existing line number. The
scrolling routine wil l read this as the last line number listed and
continue listing from the next line number. This js a major problem
in the 40 column mode, but can be lived with in the 80 column
mode by limiting all lines to one screen line.

The third problem is a computer lockup when scrolling up past the
first line in the program if there is anything appended to the
program between the end of the program and the end of basic
pointer. When this occurs, the technique of assuming the end of
program link is at the end of Basic minus two is incorrect, and
causes the "rstl ink;" routine to go into an endless loop.

I have rewritten the "foundup" routine to eliminate this problem by
executing it twice at the first to last line transition. The first time it
looks for the pointer pointing to the last line link, while the second
time it looks for the link pointing to this link.

The revised assembler code below is 9 bytes shorter than the
original, so the revised code can simply be inserted in the original.

Note: the following Basic program line wil l set AD as the address of
the byte following the last line link. This can be compared with the
end of Basic to determine if any bytes have been appended to the
program:

63999 ad = peek(4610) + 256.peek*4611) + 35: return

Here is my version of the "foundup" routine:

foundup jsr
jsr
bcc
jsr
ldx
Ida

putback
huntline
upout
scrldwn
linkpntr
l inkpntr+ 1

cmp sob + 1
bne find
cpx sob
bne find
jsr scroldwn

scroldwn
0

find

init

jsr

Ida
tax
jsr

ldx
Ida
jsr

init
linkpntr
l inkpntr+1
init

jmp setup 1

Moved next stx to start of init
Moved next sta to start of init
Branch if last line listed was
not the first line in the program

;Insert two blank lines

;Set Oldlink at $0000

;Find the address of link

;pointer to $0000 and
;put into Oldlink
;Find address of link pointing
;to Oldlink and then jmp to the
;line Lister routine

ldx sob ;Start search at Start of Basic
Ida sob + 1

rstlink stx linkpntr
sta l inkpntr+1
jsr rdnwlnk ;Read value of next link (x,a)
cmp oldlink + 1
bne rstlink ;Loop until linkpntr points
cpx oldlink ;to Oldlink
rts

Xref64: I'm afraid there are two bugs in Xref64, but thankfully both
are pretty easy to fix. So here goes.

Change the third number on line 1530 from 217 to 214.
Change the last number on line 1770 from 165 to 76.
Change the first two numbers on line 1780 from 30 and 208 to 198
and 166.

Replace lines 3270-3310 with the following lines:

3270 data 82, 65,
3280 data 6 ,144 ,
3290 data 208, 3,
3300 data 0, 0,
3310 data 0, 0,

77, 13, 13, 0, 165, 29, 201
4 ,169 , 5 ,133, 29 ,165 , 30

76, 134, 161, 76, 145, 161
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 162, 6 .1 , 160

stx oldlink ;Relocated stx and sta opcodes
sta o ld l ink+1

I'm sorry for any inconvenience these bugs may have caused.
(I hate bugs!)

Sincerely, David Archibald

Editor's Note: If there's space, and there should be, we'll put new
versions of the CI28 Programmer's Aid and Xref64 on Transactor
Disk *20 for this issue.

Division Revision: For the following correction we are indebted to
Ross Churchman of Thunder Bay, Ontario, who writes:

In the second part of the article "High Speed Integer Multiplies and
Divides" (Transactor, Volume 8, Issue 1), there are several typing
errors that can be misleading if not noticed, as was the case the first
time I read the article. All occur in the section on Division (page 43,
second column). The line "M1/M2 = Rl rem R2" looks as if M l is
divided by M2, whereas M1 is actually dividing into M2. This should
have appeared as:

M1)M2 = R1 rem R2

In Step 5 at the bottom of the same column, the line "CMP R2-M1
(carry clear)" should have read "CMP R2-M1 (carry set)". At this
step, R2 is equal to M l in the example used, and subtracting with
the carry set, as the ML code does, will leave the carry still set.

There is one further mistake, in the ML coding of this division
algorithm (page 45, second column). The fourth line, which reads
"ROL M2 + 1" should have read "ROL R2 + 1 " . This makes the code
compatible with the earlier steps and description.

As a computer hobbyist and teacher of community night courses in
machine language and computer interfacing, I enjoy your magazine
very much. Keep up the good work!

The Transactor 17 November 1987: Volume 8, Issue 0 3

TeleColumn

PunterNet By Geoffrey Welch, Toronto, Ontario

Most Transactor readers wi l l be familiar with the name Steve Punter.
Since he wrote his first BBS (Bulletin Board System) program years
ago, 'the Punter BBS program' has gained recognition as the most
polished BBS program available for the Commodore 64. However,
the one thing that Commodore-based BBSes lacked that was
available for larger computers was the ability to 'network', to have
messages transferred from one BBS to another. Although network
ing had been discussed several times before and methods of doing it
had been thought of, no one had actually produced a working
network. Steve Punter, seeing that the interest in networking had
left the stages of theoretical discussion and was nearing the experi
mentation stage, worked out his own solution and put it into testing
with six boards in the Toronto area starting in the fall of 1985. The
system proved reliable and, in March of 1986, was made available to
the general public. I was the first to sign up and have been operating
'Node 7' ever since.

From the beginning, the system has been 'a hit'. As I type this, 89
boards have registered to join the network - about a third the
number of BBS programs Punter has sold - and about 60 are active.
PunterNet users can send mail from Halifax in the east to Hawaii in
the west, south to Miami, and off-shore to Bermuda, in some cases
for less than the cost of a stamp! Many of the active boards are in the
Toronto area, and Toronto users take advantage of this to participate
actively on several boards while only having to sign on to one.

The BBS program itself didn't look different. The first thing an
unsuspecting user saw were messages from people whose first
names started with a number and a slash. "1 /Steve Punter" and " 7 /
Geoffrey Welsh" didn't exactly look like names a loving parent
would give their children. . . those inspired enough to read bulletins
knew, though, that this was simply how the BBS indicated that the
message had come from another board. The number before the
slash told you which 'node' the message came from so that, when
you replied to the message, the BBS could make sure the message
was routed through the correct board and arrive in the recipient's
mailbox.

For instance, if Steve Punter wanted to send me a message on my
board, he would tell his board to send the message to "7/Geoffrey
Welsh" and, after midnight that night, his board would call node 7
(my board). When it got through, it transferred the message and the
message would appear on my board as having come from "1 /Steve
Punter". Since our boards are within local (free) calling distance, the
board will deliver the message the same night. Obviously this could
prove expensive if the destination was long-distance, so the pro
gram offers the message sender two options for long-distance
messages: regular and fast delivery. Regular delivery keeps mes
sages going to a given destination in a file until there are four
messages going to the same place (so the cost of the call is
distributed over the four messages) or until the message is four days
old (to make sure that the message doesn't sit and wait forever
The Transactor

before it's sent). If the message is important and must go through
immediately, the sender can designate the message for fast delivery,
which means that the board wi l l not wait for the four messages or
four days, but send it immediately. For this luxury, the sender pays
double the normal cost of sending the message.

That, of course, brings up the cost of sending the message to begin
with. If your node is within local dialing distance of another, it
doesn't cost anything to send a message to a user there, so SYSOPs
(SYStem OPerators) usually let users send messages to local nodes
free. But contacting most boards requires a long-distance call, and
that costs money. Fortunately, the network calls are all made while
the telephone company offers the highest discounts. Still, the call
costs money and the SYSOP must pass on that cost to his/her users,
and the BBS program has a buil t- in accounting system to handle
this. Only users with money in their account may send messages to
long distance destinations, and the program automatically calcu
lates the cost of a message (based on the length of the message and
a minimum charge) and deducts that from the user's account. The
exact charges are completely up to the SYSOP, so they vary from
board to board.

Further savings are possible using 'pathways'. For instance, there
are over a dozen network nodes in the Toronto area. Why should a
California (or, for that matter, Hawaii) node call each of these
separately, when they are all a free call away from each other? The
pathway concept allows SYSOPs to route messages to nodes other
than their actual destinations, so that all messages to the Toronto
area can be sent in a phone call to one node, and the Toronto node
would then distribute the messages to their destinations. Although
this is most effective in Toronto, where a single call can distribute
messages to nearly twenty boards, there are other areas where two
or three nodes can call each other free of charge. Naturally, only
boards with storage space to spare can handle the heavier loads that
result from using them as pathways, but the concept works well.

But how does any node (and its users) know what other nodes are
on the network? This is accomplished by two files - "NetUpdate"
and "NODES". The first is a file containing the latest list of nodes
and the information about them: their telephone number, their
speed (300 or 1200 baud), if they are temporarily down, etc. The
NetUpdate file is kept up to date by Steve Punter at PunterNet
'headquarters' here in Toronto and is automatically fetched by any
board that sends a message to node 1 (or, if the caller is using a
pathway to get to node 1, whenever it passes a message to the board
it designated as the pathway to node 1). The second file, NODES, is
just a bulletin that the board fetches along with the NetUpdate file IF
the SYSOP has told it to do so. Users can see the NODES file by
entering the bulletin section and typing NODES.

Thanks to PunterNet, I keep in touch with a friend in Kitchener,
Ontario, and people in Los Angeles, Milwaukee, Montreal, Allen-
town, Vancouver. . . people I would never had heard of if it weren't
for PunterNet. And it only costs me a couple of dollars a month!

18 November 1987: Volume 8, Issue 0 3

A Switchable Mark Farris
RS-232 Interface Tulsa, Oklahoma

A do-it-yourself "VIC1011A adapter" for true RS-232 at the user port!

I recently had a chance to purchase a surplus 1200 baud Hayes
compatible modem. These external modem cards were com
plete except for the power supply and, of course, the interface to
connect it to the 64's user port. Building the interface is what
made the difference between a "good deal" and paying ful l retail
to upgrade from 300 baud. I was fortunate enough to have some
of the necessary parts on hand, such as the user port connector
and the capacitors, resistors and diodes. This saved about half
the cost of buying all the parts for the project.

Preliminaries

In theory, adding an RS 232 port to the 64 would allow the
connection of just about any device that provides an RS 232
connector. In practice, there are software and hardware differ
ences that make this type of universal connection difficult. The
following interface was designed to work wi th a stand alone
Hayes compatible modem, but as long as the software require
ments are understood, it should work wi th just about any DCE
device. (See Martin Goebel's "Universal RS-232 Cable" Vol 7,
issue 4, for an explanation of DTE vs. DCE devices).

The lines to and from the modem can be separated into 2
groups: Data lines and Control lines. Data lines carry the actual
data to and from the modem, and Control lines control that data
flow. Another way to think of it is: data that pass via the Data
lines go through the modem, down the phone line, to the
destination computer and back again. There are 2 Data lines:
Transmit Data (TxD) is an output from the computer and Receive
Data (RxD) is an input to it.

Control lines, on the other hand, go to and from the modem
itself. These lines handshake between the modem and the
computer, and allow the software to make decisions based on
the presence of high or low signals at the user port. The
Commodore 64 provides 7 control lines, 6 of which are standard
RS-232 control lines: Request To Send (RTS), Data Terminal
Ready (DTR), Ring Indicate (RI), Carrier Detect (DCD), Clear To
Send (CTS), and Data Set Ready (DSR). Most modems provide all
6 of these control lines, but some modems also provide a Speed
Indicate (SI) line. Commodore didn't provide a SI line on the 64,
but fortunately they did add an extra unassigned pin on the user
port. This unassigned pin (J) can be used as the SI handshake, as
well as any other control line. If pin J on the user port is to be
used as a Speed Indicate line, the software would be responsible
for that configuration. This brings up the question of software
compatibility.

User Port RS-232 Configuration
* = Control line

Pin Assignment

A,N Ground
B,C Receive Data (RxD)
D Request To Send (RTS)*
E Data Terminal Ready (DTR)*
F Ring Indicate (RI)*
H Carrier Detect (DCD)*
J Unassigned *

K Clear To Send (CTS)*
L Data Set Ready (DSR)*
M Transmit Data (TxD)

Compatibility

For some reason, not all commercial interfaces connect every
control line available at the user port. One popular interface only
connects 4 of the 7 control lines: CTS, RTS, DTR, and DSR.
Those 4 lines are switchable, which makes for a more versatile
interface, but the fact that the DCD, RI, and SI lines are left out
makes that interface incompatible with many types of software.
Some Bulletin Board software " looks" at the Ring Indicate line
for an incoming call. The Commodore VIC 1011A interface does
not connect the RI line, making it incompatible wi th some of the
most popular BBS software written for the 64. There is no
standard method for accessing the control lines through soft
ware. Programmers can, and do, use different lines to accom
plish the same thing. The DSR pin tells the computer when the
modem is turned on, and the DCD indicates the presence of a
carrier. But the DCD line could be used in the place of both of
these lines. After al l , if there is carrier present, it goes without
saying that the modem has power. There are also those pro
grams that are written under the assumption that a Commodore
modem wi l l be used. Programs written for use wi th a 1670 wi l l
not always work properly with a Hayes compatible modem.

A Better Way

The problem of compatibility can be solved by building an
interface capable of adapting to different software requirements.
This is accomplished by connecting all control lines and making
each one switchable. Digital signals are expressed as either
being "h igh" or " low", w i th a high being in the + 3 to + 5 volt
range and a low being close to 0 volts or Ground. The user port
works on this (TTL) digital principle. The RS-232 standard as set
by the EIA does not follow this TTL system. RS-232 devices can

November 1987: Volume 8, Issue 0 3 The Transactor 19

send a wide range of voltages to and from each other. They are
not limited to 5 volts, and quite often use a 12 volt level if there is
some distance between them. Instead of using positive voltage
as a "high", RS-232 assigns a negative voltage as the high
signal.

The RS-232 standard dictates that signals between devices wi l l
be + or - 15 volts wi th the positive voltage being a " low". Input
and output voltage on this interface wi l l be in the + / - 5 range.

Negative voltage is considered a high in any RS-232 cable, but
applying a negative voltage to the 64's user port can damage the
computer. So, it's the interface's job to convert the RS-232
signals to signals usable by the user port. Inputs to the user port
from the modem's RS-232 connector must first go through a
MCI489 Quad Line Receiver IC. It changes the -5 volt (high) and
+ 5 volt (low) signals to normal TTL levels. Outputs from the
user port must go through a MCI488 Quad Line Driver IC. It
takes the user port signals and converts them to RS-232 type
signals.

Control lines are not treated the same as Data lines by the 64.
Data lines are configured as "active low" on both the modem
and computer. That is, the line is ON when it is at 0 volts
(Ground level).

Control lines are "active h igh" at the user port (line is ON when
+ 5 volts is applied). Since the modem wants all lines to be
"active low", the Control lines must go through an extra inver
sion. Most commercial interface designs use a 740 4 Hex
Inverter IC to take care of this inversion, but there is a better
way. To make the Control lines switchable, they are connected
through 2 74LS86 Quad XOR Gate ICs. Each Control line is
connected to one of the 2 inputs on each gate. The other gate
input is hooked through a DIP switch to ground. A 1 OK resistor is
connected to + 5 volts in parallel with the switch so that the DIP
switch selects either + 5 volts or ground. The truth table for the
XOR Gate 1C shows that only an odd number of inputs produces
a high output. This means that when the switch is open, there
wi l l be a high on one input. Any signal coming in on the control
line wi l l be inverted. Closing the switch lets the signal go
through uninverted. The normal setting wi l l be all switches
open but, to satisfy different software requirements, each line
can be changed independently.

Construction Tips

Radio Shack's Digital IC experimenter's circuit board is ideal for
this project. The user port connector solders directly to the "plug
i n " edge of the circuit board. It is not necessary to t r im the circuit
board to make it the same width as the user port connector.
There are 2 separate supply busses on the circuit board. Connect
Pin 2 on the user port to one of the supply busses. This wi l l be
the + 5 volt (Vcc) supply to the ICs. Connect Pins 1, 12, A, and N
to the other supply buss. This makes the Vcc and Ground
supplies easily accessible from anywhere on the board. It is then
a simple matter of placing the IC's on the board with the supply
busses running directly under each chip. Solder pins (14) and (7)
on the IC's to the proper buss (except U l) .

The Transactor

Al l IC's get their supply voltage from the + 5 buss except the
1488 Quad Line Driver. The 1488 requires a Vcc of at least + 7
VDC and a Vee of at least -2 .5 VDC. This supply is taken from
Pin 11 on the user port. Positive going cycles of the 9 VAC go
through D l , and are filtered by C I . This supplies pin 14 of the
1488 with Vcc. Negative cycles go through D2, are filtered by C2
and supply pin 7 with Vee. C3 and D3 serve the purpose of
equalizing both the positive and negative voltages from pin 11
on the user port. Without the addition of the extra Diode and
capacitor, the voltage on pin 14 of the 1488 IC would measure
close to +12 VDC and the voltage on pin 7 would be approxi
mately - 1 VDC. With the addition of the equalizing circuit, both
sides should measure between + / - 10 to 12 VDC. This is wel l
within the maximum of + / - 15 VDC allowed.

After connecting the supply circuit to U l , plug the circuit board
into the user port and measure the voltage on pins 14 and 1 to
verify that pin 14 is getting approximately + 10 volts and pin 1
has -10 volts. (Make sure the computer is OFF while plugging it
in). Next, place the DIP switch on the board with one row of pins
in the Ground buss. Connect the other end of each individual
switch to the proper pins on the 74L S86. Now the 10K resistors
can be connected from the + 5 volt buss to the pins on the
74LS86 IC. Connect one of the ribbon cable wires to the correct
pin on the DB25 connector. Go ahead and connect the wire all
the way from the DB25 connector to the user port, through the
74LS86 when necessary, thus finishing each line one at a time.

Go slow and follow the schematic. A different colored wire for
each line would make tracing the circuit easier later on, so
rainbow colored ribbon cable would come in handy here.

After all Control and Data lines are hooked up, solder the .1 mf
capacitors from pin 14 to the ground buss on all IC's and from
pin 1 to the ground buss on the 1488. Solder the 470 pf
capacitors from pins 6,8, and 11 on the 1488 to the ground buss.
Now solder all unused inputs on the 1488 and 1489 to the
ground buss. This should complete construction of the interface.

If everything is hooked up right, there should be 2 unused gates
on U2, 1 unused gate on U5, and 1 unused switch on the 8
switch DIP. The schematic shows one line out of U2 going to the
unused gate on the 74LS86 hooked to the unused switch. This
line can be kept as a spare if, for some reason, one of the other
lines develops a problem.

Final Thoughts

Radio Shack part numbers are listed for some components. Just
about any electronic parts supplier should have most parts stock
including the 74LS86 XOR Gates. Ordering all parts by mail
would probably be the least expensive way to go. Use only LS
versions of the 7486 XOR gate IC. These use very little current
and there is only an extra 100 mA available at the user port. If
there is a software compatibility problem, experiment wi th the
switch settings. Closing switches to the DCD, DTR, and CTS
lines wi l l emulate a 1670 modem with some software.

2 0 November 1987: Volume 8, Issue 0 3

Parts List

1 Experimenters circuit board (Digital IC) 276-154AJ
1 12/24 .156 edge card connector (user port)
1 DB-25 connector (25 pin RS-232) 276-1547
3 100 mf 35 volt electrolytic capacitors
3 470 pf disk capacitors
6 .1 mf disk capacitors
8 1 OK 1/4 watt resistors
3 1N001 rectifier diodes

1 1488 Quad Line Driver IC 276-2520
2 1489 Quad Line Receiver ICs 276-2521
2 74LS86 2 input Quad XOR Gate ICs
1 Miniature 8 rocker DIP switch 275-1301

18-36 in. of r ibbon cable (11 or more conductors)
Several feet of 22 ga. or smaller hook up wire

Note: On 1488 and 1489's
Ground all unused pins
All Resistors are 10K 1/4W — 6 + 5 V D C

The Transactor 21 November 1987: Volume 8, Issue 0 3

Bullet Proof
Computers

Evan Williams
Williams Lake, British Columbia

. . .two enemies of modern electronics are high voltage and excess heat. . .

It was a dark and stormy night. The clock struck twelve. With a
brilliant flash and a clap of thunder, a 50 megavolt bolt of
lightning struck the high ground wire on the power line three
kilometers from the house. This induced a 2000 volt transient. In
microseconds it appeared at the input to the power supply of the
computer. The transformer reduced this to a mere 200 volts.

Unfortunately, the voltage regulator device in the power supply
had a maximum rating of only 35 volts. It died. So did a number
of parts in the computer . . .

The scenario above is avoidable. Two enemies of modern
electronics are high voltage and excess heat. In most consumer
electronic devices, especially those at the low end of the price
scale, little or no protection against high voltage is present. High
voltage transients wi l l damage integrated circuits (IC's) resulting
in prompt failure of the devices.

It is also usual for a design to operate near and sometimes above
the maximum temperature rating of the IC's. Excessive heat wi l l
cause eventual failure of an IC by increasing the mobility of
dopant materials in the semiconductor. This dopant migration
changes the properties of transistor junctions until they stop
working. The rate at which this happens is directly related to the
operating temperature of the IC. This relationship is not linear
and below a certain temperature the dopant atoms are mostly
locked in place. If the IC is operated below this temperature it
may be expected to function for many years. If it is operated
much above this temperature it may fail in months or even
weeks.

Warnings and Disclaimers

The following instructions for modifying your computer equip
ment include working on devices with 110 volt wir ing. ALWAYS
unplug all equipment. If you have ANY DOUBT about your
ability to work safely then find a friend who knows how.

Modifying your computer may also void the warranty. Although
these changes wi l l greatly reduce the risk of failure, it is impos
sible to protect against all possible insults to your equipment.
Please read the entire article, particularly the section on static
electricity, before performing any of the operations described
here.

The Power Source

In North America, the standard line voltage supply is commonly
referred to as 110 volt AC. In fact, the normal specification for
household electric power is 107 volts to 125 volts AC. The actual
voltage may be any value between these limits and wi l l vary as
the load changes. It is common for the voltage to go beyond
these limits in industrial or rural areas. In general, low voltage is
not harmful to computer equipment unless the situation is
extreme. The most noticeable effect may be a reduction in the
display size on the computer monitor or TV. If a "brownout" or
extreme low voltage condition occurs, it is best to turn off all
gear. Such brownouts can be followed by high voltage surges as
major load shedding occurs to bring up system voltage.

Sustained high voltage conditions where the voltage is only
slightly above normal can cause overheating of the power
supply and eventual failure. This situation cannot be easily
prevented. To check your line voltage use a good quality ac
voltmeter and check the voltage over a period of days. A meter
wi th a peak hold function is most useful. The author has
measured line voltages as high as a steady 130 volts wi th the
voltage usually around the 125 volt range. When the voltage is
this high it can cause overheating of the power supply. If you find
your line voltage is often above 125 volts you might try com
plaining to your local power company but don't expect much in
the way of action. The first response wi l l be to question the
accuracy of your meter. Unfortunately, the only remedy for a
constant overvoltage condition is to buy an expensive autotrans-
former with enough wattage capability to handle all your gear. If
an autotransformer is used, all equipment that is interfaced
together must be operated from the transformer. If not, ground
ing problems may result.

Electrical storms are a major danger in many areas. When
lightning strikes the power line it can produce damaging tran
sients many kilometers away. If l ightning strikes near the service
connection severe damage to some or all equipment connected
wi l l probably result. No certain protection is possible in this
instance other than unplugging ALL equipment. Note that
simply turning off the power may not be enough since a close
strike wil l produce voltages high enough to jump straight
through switches. The author has worked on equipment where
components have been vaporized right off the circuit board by a

The Transactor 22 November 1987: Volume 8, Issue 0 3

nearby strike. If an electrical storm is overhead or nearby, turn
off and unplug your equipment.

The more common situation is when lightning strikes the power
line somewhere in the same county. This may produce much
smaller but stil l damaging transients. These can be handled by a
device called a metal oxide varistor (MOV). The MOV presents a
resistance to electrical current which is voltage dependent.
When voltage across the MOV rises to the rated value, the
resistance drops to a very low level, in effect becoming a short
circuit. This prevents the voltage rising much higher and is
called "clamping". MOV's can withstand very high currents for
short periods of time. By placing a MOV across the hot and
neutral wires of the power line, protection against transients is
obtained. The power distribution system in the home should not
be modified so the way to do this is to install a MOV in a power
bar. If you are using a power bar that indicates it has surge
protection then it already has such a device. Do not confuse this
wi th the required circuit breaker found on all power bars. The
circuit breaker is there to protect the power bar from overload,
not the equipment plugged in to it.

If you have a power bar that can be disassembled, it is very
simple to install a MOV.

For complete protection against common mode transients as
well as differential mode two more MOV's may be installed, one
from the hot side to the ground lug and one from the neutral side
to the ground lug. Tug lightly on the wires in the connector holes
to ensure they are properly trapped. Tape the MOV to the
receptacle with electrical tape. Reinstall the back cover of the
power bar and you are done.

Additional Considerations

If you live in an area wi th underground power service do not
assume your system is safe. The power distribution system
always has some overhead connections that can be struck by
lightning (ie. street lamps and traffic control devices).

If your computer is connected to a television for display purposes
this presents another path for destructive energy, especially if
the television uses an outside antenna. Yet another path exists if
a modem is connected to the phone line and the computer.

Again, the only sure protection during an electrical storm is to
unplug all devices that could provide a path for destructive
energy to your computer.

Modifying a Power Bar The Computer Power Supply

Unplug the power bar and all equipment. Remove the power bar
back cover. If the power bar uses ordinary receptacles it wi l l
most likely be wired using push-in connectors on each recepta
cle. The end receptacle should have two free push- in connector
positions (see figure 1). Bend the wires of the MOV (Radio Shack
276-570 or *276-568) to the correct spacing with right angle
legs so that when pressed in to the connector holes the MOV wi l l
lie flat against the receptacle body. Install the MOV by pressing
the wires into the holes. One wire should go into a hole on the
hot side and one on the neutral side. It doesn't matter which wire
goes where since a MOV is non-polar.

R L U S H BE] C - O H N D G i T i O R S

as R L U S H
G . O N N E - C i T i O . R S

G R O U N D

tLffl©

E w a i

Many home computers use an external power supply. This is
done for a variety of reasons. The most important reason is that
using a separate supply limits the 110 volt ac power distribution
to that area only. This makes testing and approval by organiza
tions like U.L. and C.S.A. quicker and easier. It also removes a
major source of heat and bulk from the main computer case and
allows more attractive design. Unfortunately, moving heat to
another box does not eliminate it.

Some Commodore power supplies are notorious for failing early,
especially the C-64 units. It is essential that the power supply be

placed in a cool, well ventilated area with no
obstruction of air flow. It helps if the unit is
raised by adding small feet to it or placing it
on blocks. It should never be placed on a
carpet or in a closed compartment. The best
solution is to place a small quiet fan so it
moves air over the unit. If you have an early
model C-64 power supply it may be of the
repairable type. The author has such a unit
and has drilled numerous 1/4 inch holes all
over the case (after removing the internals!).
This helps tremendously in keeping the unit
cool. Al l later model C-64 supplies are NOT
(easily) repairable as the components are pot
ted in epoxy making the unit a solid brick.
This does not help the cooling. The VIC-20
supply runs cooler as the power demands are

The Transactor 23 November 1987: Volume 8, Issue 0 3

less than the C-64. The C-128 power supply
runs much cooler (better design) and should
not present a problem.

If a problem appears wi th the C-64 supply it is
advisable to replace it wi th a second source
unit such as the CPS-10 made by Estes and
available from Jameco Electronics for US
$39.95. This unit includes 110 volt ac outlets
wi th spike protection. Also available from a
number of sources are fan/outlet units with
spike protection in the $30 to $40 price range.

Heat and the Computer
E M U

From the UNIVAC to the C-64 heat has been
a problem. The ROM's in the authors PET
2001 ran so hot they could not be touched comfortably. This is a
sure sign that an IC is too hot. A thermocouple measurement
showed a temperature of 71 celsius (160 F). The maximum safe
operating temperature for most IC's is 70 degrees celsius (158 F).
Some IC's in the C-64 and 1541 disk drive also run hot. The
solution is to install heat-sinks on the IC's. The most suitable
type are heat-sinks designed for TO-220 semiconductor de
vices. These are available at most electronics stores including
Radio Shack (catalog number 276-1363).

Open the case of the computer or disk drive by removing the
screws found in the underside. Carefully lift the top half of the
case off. Most C-64's wi l l have a foil covered piece of cardboard
over the circuit board. This is a RF shield. It is also a heat trap. In
most cases the author has found little or no increase in TV or
radio interference if this shield is removed. Early C-64's did not
have this shield. It is not illegal to remove this shield but if your
equipment causes interference and a complaint is made to the
Department of Communications you wi l l have to correct the

FECDQJBDI ©

problem. Removing the shield can degrade the picture if you are
using a TV set as your monitor. Experiment by tearing the small
copper tape at the rear and bending the entire shield towards the
front of the computer. Place the keyboard loosely on top of the
lower case with the shield sticking out the front and turn on the
power. If no noticeable interference exists on your TV or radio
then you are safe in ripping the shield out. Removing this shield
wi l l not harm your computer, but wi l l void the warranty.

Next, leave the computer running for half an hour. There are no
dangerous voltages present in the computer. Watch out for rings,
metal shirt buttons, necklaces, chains or any other metal objects
that might fall in the machine and short out power. Although not
dangerous to the user it could fry your computer. After it is
warmed up, open the lid and place your finger on each large
integrated circuit. Several IC's wi l l be found that are quite warm.
Also, the video circuits metal box (see figure 2) wi l l be warm. To
attach heat sinks to the IC's and the video circuits box the author
uses only silicone heat sink grease (Radio Shack part number

E M lllllllllllllll inula |5ER

U l U 2

.D D

U 3 U H U 5 i n

000
R F
MODULRTDR

E H P R N 5 I 0 M
PORT

O O

O

o

o © © o
o o o o

UXDEQ CXRCUTS

© © © ©

I ™sz I Lf_U

GROUND
TRRCE

[?S©CDBS S

The Transactor 24 November 1987: Volume 8, Issue 0 3

276-1372). This is sticky enough if the computer is not moved
much. Use just enough to cover an area on the IC equal to the
size of the heat sink. Place the heat sink on the IC and press into
place (see figure 3). If the computer is moved around a lot use
just enough grease to cover two thirds of the heat sink area on
the IC. Cover the other third with contact cement and when
tacky press the heat sink into place. The same procedure is used
on the video box. The author used three heat sinks in a row for
the video box. This overall procedure should also be carried out
on the 1541 disk drive. Be careful to check for clearance of the
heat sink fins wi th surrounding parts and the upper case. If
interference exists the heat sink can be hacked, bent or chopped
as needed.

The C-128 has an all metal shield covering the entire circuit
board closely. In this shield are cutout tabs that contact certain
IC's below. On two of two C-128's examined the tabs were not
contacting properly and did not have enough heat sink grease.
The C-128 shield is fastened in place with a series of screws
around the perimeter and some small bent metal tabs from the
lower shield. By removing the screws and straightening the tabs
the shield may be lifted off. The heat sink tabs should be
reformed to ensure good contact with the IC's and a generous
amount of heat sink grease applied. Reinstall the shield. Do not
overtighten the screws holding it. Rebend the small metal tabs
which provide contact wi th the lower shield and reinstall the
case.

• Never cover your computer gear wi th anything whi le it is
operating; no magazines, no disk jackets or anything else.

• Always leave some space for air circulation around the equip
ment. Do not stack disk drives unless a fan is used to cool
them.

• Operating the equipment in the direct sun is a good way to
overheat it. Remember, the primary cause of component aging
and eventual failure is excess heat.

Al l of the author's computers and related accessories have been
overhauled as above. Some of the systems operate 24 hours a
day. Since 1978 only two component failures have occurred and
one was an early failure in the first month of ownership. The
second was induced by zapping the joystick port on a C-64 with
static electricity.

Static Electricity

Static electricity is a charge caused by friction. Walking across a
plastic carpet on a dry winter day can build an amazing charge
on your body. Touching any conductive object at a different
potential can cause the charge to arc over. The insulating value
of dry air is about 20,000 volts per centimeter. Anyone who lives
in a dry climate has probably seen a spark at least this long
jumping from their finger to another object. The maximum
voltage that most IC's can withstand is about 25 volts or less. A

static charge large enough to damage an IC can be so small that
no evidence of it exists to the senses. Certain parts of all
computers are easily damaged by the slightest touch when
conditions are just right (wrong!).

The C-64 has two very vulnerable joystick ports right next to the
often used on/of f switch. These ports use exposed male pins on
the computer side (arrrggghhh) so as to be compatible wi th Atari
joysticks. Under no circumstances should these pins be touched.
Worse yet, on the C-128 the reset switch is right next to the
joystick ports.

The solution is to remove static charges from the user. The
simplest way is to touch something metal that is grounded to the
same outlet as the computer before touching any part of the
computer. This is not always practical and there is a better way.
An expensive solution is to buy an anti-static mat to place the
computer on. This is connected to the outlet ground with a wire
and drains static charges painlessly when touched. The author
uses a cheap but effective method. Buy a small roll of 3 /16 inch
tin plated copper tape from a stained glass supplier. Stick strips
of this tape to the side of the computer surrounding the joystick
ports so that anyone plugging in a joystick cannot avoid touch
ing the tape. Bring one end of the tape inside the case. Solder a
one megohm resistor to the tape and with a piece of flexible wire
solder the other end of the resistor to the ground trace on the
main circuit board (see fig 2 for C-64). On the C-128, solder to
the metal RF shield. Wrap the resistor with electrical tape or
shrink tubing and close the case. The resistor is necessary to
prevent a sudden surge of voltage. This modification costs very
little and is effective wi th small children.

When doing any work on electronic equipment is is advisable to
wear cotton clothing that does not produce static charges.
Always make sure that you touch something grounded before
touching any components. Before soldering, touch the tip of the
iron to ground or use a grounded iron. It is best to avoid
disassembly at all if the air is really dry and static is zapping
everywhere.

A Final Observation

The author has always followed the practice of "burning i n " new
electronic equipment. This means just setting the new unit up,
turning it on and leaving it on 24 hours a day for at least a week.
For some reason, this seems to prevent future failures. The
author has no certain explanation for this but there are some
effects such as "oxide healing" that could explain it. It seems
best not to subject the new gear to on/off power surges until this
burn- in is done. The author is a confirmed techno junkie and
buys every new widget that comes along. Al l items are burned
in. Over the years almost no failures have occurred from clocks
to stereos to computers. This is a GOOD THING. The author
repairs computerized devices for a living and would rather not
do it at home as wel l .

The Transactor 2 5 November 1987: Volume 8, Issue 0 3

The 1581 Disk Drive: M. Garamszeghy
A technical evaluation Toronto, Ontario

.. .the 1581 supports subdirectories or, more correctly, disk
partitioning, with each partition having its own BAM and directory. . .

A few days before turning the big 3-0,1 received a birthday present
in the form of a little plain brown box from Commodore, courtesy of
Dan and Jim at Westchester. Inside, I discovered CBM's latest
offering for its 8-bit line: the 1581 3 ' / 2 inch disk drive. (Although
the label on the front of the drive specifically says "FLOPPY DISK
DRIVE", I refuse to call a 3 ! / 2 inch disk "floppy", especially when
my 1571 merely says "DISK DRIVE". For those not familiar with a
micro disk, it is encased in a rigid plastic housing making it the least
floppy of flexible disks.)

This little beast is compact, quiet, fast, and versatile. It runs on the
standard or fast serial port and is primarily designed for use with the
CI28, but works quite nicely with the C64, Plus/4, CI6 and even
the VIC 20. Early prototypes were reported to have problems
dealing with the slow serial bus of these other machines, but these
appear to have been corrected now. The external power supply
allows the drive to run much cooler than the 1541 or 1571. It still
runs a bit warm, but nothing like my dual purpose toaster-cum-
1541 disk drive. The physical size of the 1581 is minuscule com
pared to the 1541 /1571 type drive.

The drive is small enough to rest nicely on the ledge behind the
keyboard of my C-128. The only physical layout item which might
be confusing to 1541/1571 owners is the location of the power
switch. On the 5'/4 inch drives, the switch is in the right rear corner.
On the 1581, it is in the left rear corner. When you are used to
fumbling around on one side to turn the drive on, switching sides
isn't fair. On the 1581 this is readily overcome due to the small
dimension. Just by putting your hand behind it, one finger is almost
bound to be in contact with the switch, no matter where it is.

The 3 ' / 2 inch disks are obviously also much smaller than the 5 'A
floppies. Smaller yes, but they also hold more than twice as much
data as a double sided 1571 disk! The built-in rigid plastic cases of
3 ' / 2 inch disks make them much easier to care for, transport without
the box, send in the mail, etc.

The quiet smooth operation of the 1581 is a joy (not) to listen to. In
fact, with the exception of a slight click as the head steps between
adjacent tracks or a low pitch squeal as it homes onto a distant track,
you would hardly even know that the drive was running. Several
times over the course of testing it, I thought that the 1581 had died
on me only to discover a few seconds later that it was indeed alive
and well and going about its normal business.

Inside, the 1581 is nicely laid out with a well shielded CHINON 80
track drive mechanism connected to the main circuit board via a

plugged multi-conductor ribbon cable and a smaller dual-
conductor cable. The main ribbon cable edge connector on the drive
mechanism appears to be a standard type, perhaps a SASI. If this is
the case, it might be possible to use the controller board with its
built-in DOS to interface to other "standard" type drives such as 80
track 5'A inch ones. Hmmm. . .

Specifications

The technical parameters are summarized in Table 1. Note the
difference between the "physical" and "logical" organization of

26

Hardware Glitch on Early 1581s

The first batch of 1581 drives have an error on the PC board
that creates all sorts of problems, and can lead to the loss of
data on disk. The problem is the lack of a ground connection
on an IC: pin 10 of U10 (a 74LS93) should be connected to
ground at pin 1 of U l (the 6502). If you are having problems
with your 1581, make this connection yourself, or bring your
drive to your dealer to have the fix made under warranty. U10
is marked on the PC board, and is located near the front of the
drive, on the right side of the board. Commodore is aware of
the problem, and has either fixed it already, or plans to fix it
on future versions of the PC board. Our thanks to Hilaire
Gagne of Laurentian Business Products for bringing this
problem to our attention.

November 1987: Volume 8, Issue 0 3 The Transactor

the disk. This wi l l be explained in greater detail later. Also note
the mention of directory partition. This too wi l l be explained later.
A couple of the 1581 's more salient points are its capacity (800k or
3160 blocks free) and speed (average about 1.5 times as fast as a
1571 when used with a C-128 or 1.5 times as fast as a 1541 when
used with a C-64, etc.). Unlike the 1571, the full capacity of the
drive, along with its advanced features (except burst mode), are
available to all computers capable of supporting the serial port.

Large sequential, program and user files are limited only by disk
space (or available computer memory). Large relative files are fully
supported up to full disk size (minus, of course, the overhead for
side sectors, etc.) by the use of "super side sectors" or extended
side sector blocks.

A speed test of the 1581 and comparison to other computer/drive
combinations is summarized in Table 2. The tests were conducted
with a C- l 28 running in slow (1 MHz) mode and C-64 mode using
the CIA *2 TOD clock as an automatic hardware timer. The TOD
(or time of day) hardware clocks are based on the system clock,
and are very accurate. They are not affected by disk operations or
system interrupts. Unfortunately, the TOD clocks (one for each
CIA) are not used in CBM ROMware.

All functions were performed from BASIC using commands such
as LOAD, SAVE, PRINT*, INPUT*, etc. The relative file test
included double record positioning, although the 1581 manual
assures us that this is not required for the 1581. (It is still used in
the examples in the manual to "maintain compatibility with other
drives".) At the start of each test, the disks contained identical sets
of test files, stored in the same order. The speeds are only meant to
be a relative indication of disk I/O from BASIC for a given set of
conditions. Disk I/O speed depends on a number of factors such
as where (i.e. proximity to directory track) and how (contiguous-
ness) a file is stored.

As you can see, the 1581 is considerably faster in all modes of
operation than either a 1541 or a 1571. The increased speed is
primarily due to the track cache used by the 1581 to buffer an
entire track at once in RAM for all I/O operations. After reading an
entire track into RAM, any further references to that track, either
reads or writes, only involve RAM-to-RAM transfer of data. The
track cache is then written back to the disk if it has been changed
by DOS. Incidentally, the 146 block file burst loaded in 5.3 seconds
with the 1581/C- l28 combination is a blistering 7000 bytes per
second! It is also interesting to note that, when used with a C-64,
the write speed is consistently faster than the read speed! Anyone
care to hazard a guess on the reason for this?

1581 DOS

The 1581 disk operating system supports all of the standard DOS
commands of other CBM drives that we have come to know and
love and contains a number of refinements over these previous
DOSes. Since the DOS was supposedly re- written from scratch for
the new hardware, the notorious SAVE and relative file bugs are
said to be finally and totally eradicated. (At least, they have not
surfaced yet.) Burst mode is also supported for C - l 28 users. The
1581 burst command set is virtually identical to the 1571 set with
a few changes to the utility commands:

"u0>b0" forces the serial bus to slow mode (default for a C-64, etc.)
*u0>bl ' forces the serial bus to fast mode (default for a C- l28)

These two take the place of the "u0>m0" and " u 0 > m l ' mode
commands on the 1571).

"u0>v0" turns on verify after write
"u0>v1' turns off verify after write
"u0>mr" + chr$(> memory address) + chr$(number of pages);
and
"u0>mw" + chr$(> memory address) + chr$(number of pages)

These are memory read and write commands allowing transfer of
multiple blocks of data (in 256 byte pages) via burst mode. This
allows direct reading and stuffing of the track cache buffer. In
addition, a new switch bit has been provided for the burst read and
write commands to select logical or physical track and sector
numbering systems.

An extended block read and block write command set is also
provided.

t> - FT (that's b - <shift> r) and
- b - W (b - <shift> w)

These are similar to *ua:" and "ub:\ except that DOS does not check
to see if the track and sector numbers fall into the range that it
normally expects. Presumably, this is so that you can read and write
non-standard disks, maybe even weird copy protection schemes
and foreign disk formats, with block read and block write.

Although it is not specifically mentioned in the User's Guide, the
1581 supports extended directory pattern matching. The pattern
match character can be placed anywhere in the pattern string. For
example:

**bas" will find all files which end with "bas"
"a*b" will find all files which start with "a" and end with "b",

regardless of the length of the filename.

This feature is very convenient for people who append file types,
such as "bas-, "ml", "text", "asm", "obj" etc. to file names. Searching
for a series of assembler source files on a disk is as easy as:

directory "*.asm"

The extended pattern matching can also be used in other DOS
commands such as opening or LOADing a file, scratching a series
of files, etc. A nice touch, Commodore.

As previously rumoured, the 1581 supports subdirectories or,
more correctly, disk partitioning, with each partition having its
own BAM and directory. Each partition can thus have 296 file
name entries. Al l this comes at a cost: each partition used as a
subdirectory also requires 40 blocks of overhead for this addi
tional BAM/directory track. In general, the partitions can be any
size, from 1 logical sector up to about half of the disk capacity, and
are created by a simple DOS command:

/0:{partition name}" + chr$(starting logical track#)
chr$(starting logical sector#) + chr$(< # sectors to partition)
chr$(> # sectors to partition) + ",C"

27 The Transactor November 1987: Volume 8, Issue 0 3

This command must be sent from the computer to the disk drive
over the command channel, similar to any other BASIC 2.0 type
disk operation, because neither BASIC 2.0 nor 7.0 supports a
partitioning command. The partition cannot overlap the normal
BAM and directory areas, hence the limitation on maximum
partition size (the BAM/directory track is smack in the middle of
the disk on logical track # 40) . The partitioning command can be
used for protecting almost any size area on the disk from being
overwritten by DOS. In real terms, the partition command works
by assigning the disk area to a file in the root directory (you can
also nest partitions but the procedure soon become very compli
cated) with the new file type CBM. The number of blocks indicated
for the CBM file is the partitioned area size. The "f i le" occupies a
contiguous area on the disk, and once set cannot be easily
changed in size without destroying it.

To use the partition as a subdirectory area, several special steps
are required. First, the starting logical sector number must be 0.
Next, the partition size must be a multiple of 40 blocks (i.e. whole
tracks). Third, the partition must be a minimum of 120 blocks
long. After creating a partition, it can be selected by:

70:{part i t ion name}"

Once selected, the partition must be formatted before first use as a
subdirectory. This is done using the normal DOS format com
mand:

"N0:disk name,ID" or
HEADER"diskname", l id

The specified disk name and ID code need not be the same as for
the rest of the disk. This puts the BAM and directory information
into the first track of the partition. You have to be careful with this
partitioning scheme: If you format without properly selecting the
desired partition, you wi l l erase the entire disk! (It is interesting to
note that the ID code is not embedded into the sector header data
in the manner of 1541/1571 drives and in fact serves no real
purpose on the 1581 except as a simple identifier for DOS to tell
what disk it has. You can change the ID code as often as you like
because it is only stored in certain areas such as the Directory
header block).

Once a partition has been selected, all reads and writes to disk wi l l
be made to files in that directory only. Al l other files in other
directories on the disk wi l l not be found. Copies of files may reside
in several partitions, even under the same names, but these are
totally separate copies. The root or main directory can be selected
by a:

70:" with no part i t ion name specif ied.

A few new DOS status and error codes have been provided to
indicate the selection of a partition or an illegal partition specifica
tion. If you are protecting a smaller area of the disk, say the BOOT
sector, you must set up the partition BEFORE you write to that part
of the disk. The partitioning process wi l l wipe clean the area that
is being protected. One thing which I do not like is that the CBM
files are not "locked" entries. This means that you can wipe out an
entire subdirectory with an errant SCRATCH command.

For advanced users, the internal DOS functions, such as read a
sector, etc., can be accessed via a KERNAL type jump table in high

ROM. Al l of the most important functions are also passed through
individual indirect RAM vectors allowing them to be trapped and
redirected. The internal DOS routines also allow you to bypass the
track cache and read or write a disk sector directly via one or more
of the job buffers. This handy feature frees up 5 Kbytes of drive
RAM which can be used for custom drive programming. You can
stuff quite a bit of ml code into 5 K!

Another feature provided is the automatic execution of an "&" type
utility file on power-up or soft reset. When a reset occurs, the
1581 searches the root directory for a file named "COPYRIGHT
CBM 86", then loads and executes it in drive RAM if found. This
must be a USR type "&" disk utility file. It can be used to set up
custom programming routines, such as changing the RAM jump
vectors, automatically on drive startup or initialization.

Physical and Logical Disks

The 1581 disk is physically configured as 512 bytes per sector, 10
sectors per track, 2 sides, 80 tracks per side. It is interesting to note
that the sides on the 1581 are flipped compared to the numbering
system used by MS-DOS and ATARI ST disks of the same side (i.e.
side 0 is side 1 and side 1 is side 0. Use the demo program at the
end of this article to see this for yourself if you wish). The tracks
are numbered from 0 to 79 as per the standard MFM numbering
scheme, and the sectors from 1 to 10 on each side. The 512 byte
physical sector size allows an extra 512 user bytes per track to be
squeezed on, maximizing disk usage. The WD 1772 disk control
ler chip can only handle 18 x 256 byte sectors per track, equiva
lent to 9 x 512, at its normal recording density when you take into
account the overhead bytes required for each sector. The 1581 is a
radical departure from other 8-bit CBM drives in that it uses the
industry standard IBM System 34 MFM recording format instead
of Commodore's 4 for 5 GCR encoding scheme. This means that
you can physically read and write other disk types (such as 372
inch MS-DOS as used in many laptops and ATARI ST) in the 1581
and, perhaps more importantly, read and write 1581 disks in these
other machines. Of course, you wi l l need a suitable conversion
program because the logical format of each of the above men
tioned disk formats is totally different.

For some reason, probably to maintain some degree of similarity
with earlier DOSes (although I don't see why because the medium
is totally incompatible), the DOS uses a different logical addressing
scheme. The logical scheme, which is used by all of the user DOS
commands, such as block-read, etc, some of the job queue
commands and some of the burst mode commands, consists of:
single sided, 80 tracks (1 to 80), 256 bytes per sector, 40 sectors
per track (0 to 39). In this scheme, logical sectors 0 to 19 are on
side 0 and 20 to 39 are on side 1. There are two logical sectors in
each physical sector. As with other versions of DOS, the first two
bytes of each logical sector represent the link to the next logical
sector in a given file.

The root or main directory is on logical track 40 (physical track
39). The directory header is logical sector 0, BAM for logical tracks
1 to 40 is in logical sector 2 and BAM for logical tracks 41 to 80 is in
logical sector 2. The directory proper starts in logical sector 3 and
uses the rest of the track. The format for partition directories is
identical, except that the BAM is only local for the specific
partition.

28 The Transactor November 1987: Volume 8, Issue 0 3

It should be noted that because the directory and BAM is in a
different location on the 1581, any 1541/1571 software that
accesses the directory track directly, such as unscratch, directory
alphabetizing and lock-unlock programs, wi l l not work with the
1581 without modifications.

Utilities and Documentation

The user's guide that comes with the 1581 is clearly superior to
any supplied with the 1541 or 1571. It even takes the advanced
programmer to heart with memory maps (albeit not very detailed)
and a detailed description of how the job queue system works,
complete with a listing of job codes, error returns and a BASIC
example. The guide contains many more detailed examples than
previous guides, but is still lacking in the area of burst mode. The
burst mode descriptions are in the same weak format as the 1571
manual with no actual examples beyond a cryptic verbal descrip
tion. To CBM's credit though, the demo disk that comes with the
drive contains a fairly detailed example burst mode program,
complete with annotated assembler source code.

The manual makes virtually no reference to the fact that the 1581
can be easily programmed to read other 372 inch disk formats,
such as IBM PC system 2 and Atari ST. It wi l l not read Amiga or
Macintosh disks directly from DOS due to a completely different
physical disk structure. However, with over 5 K space available for
custom programming, anything is possible.

The utility disk supplied with the 1581 comes with a number of
really useful programs. The back-up routines for both the C - l 28
and C-64 support expansion RAM and/or multiple drives to
minimize disk swapping. A fast loader, 'ZAPLOAD', is provided
for the C-64, which doubles the speed at which files wi l l load.
Files to load are selected from a menu. Also included are a sector
editor for the C - l 28 (not just "display track and sector") and other
utilities for creating BOOT sectors, partitions, etc. The only thing
which I did not like about the sector editor was that it works on
CBM DOS disks only using logical sector numbers and wi l l not let
you examine foreign disk formats very easily. The simple demo
program included with this article works with any readable disk
type, including MS-DOS, and ATARI ST.

A few hi-res pictures are also included in a slide show for the C-
128 in 40 column mode to demonstrate the drive's speed.

Fast loaders, fast copy utilities, nibble copiers and 1541 based copy
protection schemes wil l probably not work with the 1581 because
they are too hardware and DOS specific to the older 5 74 inch
drives. However, other non - copy protected software works well
with the 1581. C-128CP/M wi l l currently not boot from the 1581,
although I understand that an upgrade wil l be available. Once
booted from a 1571 or 1541, CP/M wil l work, to a limited extent,
with the 1581. The physical disk format is very similar to EPSON
QX- 10 format. Therefore, CP/M thinks it is a QX-10 disk and
treats it accordingly. The trouble with this is that you lose half of
your disk capacity (QX-10 is only set up for 40 tracks). For those
diddlers interested, you can use all 800 k in CP/M mode by
changing a few bytes in the CPM + .SYS file disk parameter table
using a debug tool such as DDT or SID. Of course, you lose
compatibility with true QX-10, but who uses that format anyway?.
(Complete details wi l l be published in the next Transactor).

Demo

Listing 1 is a short demo program for the 1581. The source code
for the machine language portion is contained in listing 2. The
program is a simple display track and sector utility that works by
direct access to the job queue and disk I/O buffers. It works with
the C- l28 in 80 column mode only and wil l read many types of
372 inch disks. The program is very simple to use and works in
terms of physical tracks and sectors rather that CBM DOS logical
sectors. The operating details and command keys are contained in
the REM statements and screen prompts, so I won't repeat them
here.

As mentioned previously, you wil l find the sides flipped for non
CBM DOS disks. The MS-DOS BOOT record is always on side 0,
track 0, sector 1, while the 1581 finds it on side 1. Similarly,
single-sided disks, such as ATARI ST, should have the data on side
0, yet the 1581 sees it on side 1. Both MS- DOS and ATARI ST use
a 512 byte sector size, 9 sectors per track, numbered 1 to 9. The
directory structure and disk allocation method for ATARI ST and
MS- DOS are quite similar, although located in slightly different
areas of the disk.

Since the demo program uses physical track and sector numbers,
the CBM DOS directory wi l l be on side 0, track 39. The directory
proper starts at physical sector 272 (i.e midway through sector 2)
and continues to the end of side 1, track 39, sector 10. The C- l 28
BOOT sector is located in the first half of side 0, track 0, sector 1.

Compatibility

As mentioned previously, any program that tries to access the
directory track directly with block reads or writes wi l l not find it
and therefore wi l l not work with the 1581 without modification.
This includes C-64 GEOS. It wil l probably take some time before
commercial software is supplied in the 372 inch format and, until
it is, you may have to boot up your favourite program on your 574
inch drive and use the 1581 for data storage only. A minor
inconvenience, but generally livable. The 1571 DOS shell for the
C- l28 works with the 1581 in its file copying mode for transfer
ring a range of files between drives. The various directory rou
tines, such as unscratch and re-order, do not work for the reasons
previously outlined.

Final Word

The 1581 is well worth its long delay in getting to market but, like
some other products, its usefulness is limited by the lack of
software available for it. In all fairness, I must give the guys at CBM
credit for doing an excellent job on this one. Its large disk capacity
is a breath of fresh air, especially for C-64 users who have
frequently complained about the 1541*3 puny 170 K capacity.

The Transactor 29 November 1987: Volume 8, Issue 0 3

Table 1: 1581 Technical Specifications Table 2: Summary of Disk Drive Test Speeds

Total formatted capacity 808,960 bytes
Number of directory entries 296 (each directory partition)
Maximum SEQ file size 802,640 bytes
Maximum REL file size 800,000 bytes (approx)
Max. records per REL file 65,535
Number of DOS RAM buffers 9 (7 I/O + 2 reserved for BAM)
Track cache buffer 5 K bytes
Recording format MFM (IBM system 34)

Physical Disk Organization: (as seen on the disk)
Number of sides 2 (numbered 0 and 1)
Number of tracks per side 80 (numbered 0 to 79)
Number of sectors per track 10 (numbered 1 to 10)
Number of bytes per sector 512

Logical Disk Organization: (as seen by DOS)
Number of sides 1
Number of tracks 80 (numbered 1 to 80)
Number of sectors per track 40 (numbered 0 to 39)
Number of bytes per sector 256
Number of blocks free 3160

Notes:
[\11 logical to physical conversions are done automatically by DOS

Each physical sector is subdivided into 2 logical sectors.
Each logical sector begins with the track and sector pointer to

the next logical sector, as per normal CBM DOS.)

Chips:
Microprocessor
I/O Interface
32 K bytes ROM
8 K bytes RAM
Disk controller

6502 A
8520 A
23256

4364
WD 1772

Physical Dimensions:

Height
Width
Depth
Weight

63 mm
140 mm
230 mm

1.4 kg

External Power Supply:
North America 100-120 VAC, 60 Hz, 10 W
Europe 220-240 VAC, 50 Hz, 10 W

Operation Disk Drive / Computer

1541/64 1571/128 1581/128 1581/64

FORMAT disk 80 40 100 100
LOAD short 4.5 1.5 0.4 3.5
LOAD long 93 11.5 6.4 75
ZAP LOAD long 30
Burst LOAD short 0.4 0.4
Burst LOAD long 10.4 5.3
SAVE short 6.5 5.7 2.1 4.5
SAVE long 100 71 31.5 52
WRITE SEQ file 9.3 7.8 5.7 6.8
READ SEQ file 8.1 4.6 3.8 7.3
WRITE REL file 155 109 57.3 89.5
READ REL file 80 77 32.3 37.5

Notes:
1) Al l times are in seconds and were obtained using the CIA *2 TOD

clock as a timer. The times you get may vary depending on disk
usage (i.e if the files are stored contiguously or not, and how far the
head has to move to access the files).

2) The short program is 5 blocks in size and the long is 146 blocks.

3) ZAPLOAD 64 is a fast loader for the C-64 and 1581 which is supplied
on the 1581 demo disk. It takes 6 seconds to load.

4) The SEQ file consists of 100 strings of 24 characters each. File reads
and writes are via BASIC'S INPUT* and PRINT* statements in a
FOR-NEXT loop.

5) The REL file consists of 100 records of 64 bytes long each. Records
are read and written in BASIC in pseudo-random order (100, 1, 98,
3,. . . , 99, 2) designed to maximize record searching. Record
positioning commands given twice for each record. The write speeds
include initial creation of a 64 byte x 100 record file.

Listing 1: 1581 drive demo program for the C128.

Note: With the exception of " [N spcs]", literals such as "< le f t>" and
"<up>" that appear in this program should be entered AS SHOWN
- do NOT replace these with cursor control characters.

GH
GD
GB
HF
MB
OF
AO
CH
GM
GL
JM
KM
FH
FP

1000 rem *
1010 r e m * *
1020 rem * 1581 demo program *
1030 rem * by *
1040 r e m * m. garamszeghy *
1050 rem * *
1060 rem * for c -128 and 1581 drive *
1070 rem * *
1080 rem *
1090:
1100 dv = 9 : rem disk drive device number
1110:
1120 fast:print chr$(147);:b1 = 3328:b2 = 3338
1130 for i = 2816 to 2935:read x:poke i,x:next

: rem poke machine code

IO
MH

MP
KP
HK
NN
EC
PG

DJ

PE

ME
LF

KE

DK

1140
1150

1160
1170
1180
1190
1200
1210

1220

1230

1240
1250

1260

1270

pr inf [7 s p c s] * * * * * * * 1581 displayt&s < c > m .
garamszeghy 1987 * * * * * . * •

sp$ = "s':print:print:inpuf[s]creen or [p]rinter";sp$
pd = 3:if sp$ = 'p ' then pd = 4
open 1 ,pd: rem open output file

print:prinfinsert disk then press a key. . .'
:getkey i$
open 15,dv,15,"u0" + chr$(10): sys 2816,0
: rem analyse side 0
print#15,'uO - + chr$(26): sys 2816,10
: rem analyse side 1

t1 = peek(b1) and 14 :t2 = peek(b2) and 14
: rem burst status byte side 0 and 1
if t1 and t2 then print "*** disk error * ** "
:getkey a$:goto 1720
sz = peek(b1) and 48: if t1 then sz = peek(b2)
and 48: rem check sector size

The Transactor 3 0 November 1987: Volume 8, Issue 0 3

FM
HF
NG
JC

NE
NP

JG

EM
CK

LN
HO
MO
HJ

FD
KA
Nl

MK
MO

LA

GE

CE

AF
OP

CD
OG
AA
DA

IK
GJ

AK
JL
LA

CG

ID
CN
Gl
CA

CC

BN

HK

1280
1290
1300
1310

1320
1330

1340

1350

1360
1370

1380
1390
1400
1410

1420
1430
1440

1450
1460

1470

1480

1490

1500
1510

1520
1530
1540
1550

1560
1570

1580
1590
1600

1610

1620
1630
1640
1650

1660

1670

1680

sz = sz/16: if sz = 3 then sz = 4
s1 =peek(b1 +4):m1 =peek(b1 +5)
s2 = peek(b2 + 4):m2 = peek(b2 + 5)
window 0,2,79,24,1 :if pd = 4 then cmd 1
:gosub 1940:print#1 :close1 :open1 ,pd
gosub 1940
si = - 1 :input"side,track,sector";si,t,s:if si = - 1
then 1720
pri nt# 15, "m-w"ch r$(206)chr$(1)ch r$(1)ch r$(si)
: rem set side
print#15, ,m-w"chr$(11)chr$(0)chr$(2)chr$(t)chr$(s)
: rem set t & s

rem then stuff job code for read physical sector
into job buffer

print#15,"m-w"chr$(2)chr$(0)chr$(l)chr$(164)
gosub 1410: goto 1440: rem wait till job done

print#15,"m-r"chr$(2)chr$(0)chr$(1): rem check
job status
get#15,a$:if asc(a$)>127 then 1410 : else return

window 0,24,79,24,1 :print#1 ."side » s i ,
"track » " t , "sector » " s ;
window 0,20,79,23
print"<left> - decrease sector#[11 spcs]
<r ight> - increase sector#"
print"<down> - decrease track#[15 spcs]
< u p > - increase track#"
print" <esc> - select new track, sector[3 spcs]
<space> - next 256 bytes ';
if asc(a$)>1 then print#1 ,"*** error #"asc(a$)
"***":goto 1320

print#15,"u0>mr"chr$(3)chr$(sz)
: rem burst mode memory read
sys 2819,sz :rem read data via burst mode

if pd = 4 then print#1," "
for i = 4864 to 4864 + sz*256-1 step 256
: rem display data in hex form
window 0,2,79,19,1
for j = 0 to 254 step 16 : rem 16 bytes per line,
256 bytes per page group

nu$ = right$(hex$(i + j-4864),3) + " : ":n2$ = ": "
f o r k = 0 t o 15:n2 = peek(i+j + k)
:nu$ = nu$ + right$(hex$(n2),2) + " '
n$ = chr$(n2):if n2<32 or (n2>127 and n2 <160)
then n$ = '. '
n2$ = n2$ + n$:next:print#1 ,nu$;n2$:next

if pd = 3 then getkey a$: rem get a key press
if a$ = chr$(145) then t = t + 1: goto 1340
: rem cursor up = increase track #
if a$ = chr$(17) then t = t - 1 : goto 1340
: rem cursor down = decrease track #
if a$ = chr$(157) then s --= s - 1 : goto 1340
: rem cursor left = decrease sector #
if a$ = chr$(29) then s = s + 1: goto 1340
: rem cursor right = increase sector #

AC

BL

CC
EA
GD
EK
KE
FD
HH
PO
FO
PB
AA
KO
DD
JD
AP

Gl
HJ
HD
IK

GJ
KO
NG
OP
Fl

ED
BL

EF
EG

ON

1690

1700

1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940

1950
1960

1970
1980

1990

if a$ = chr$(27) then 1310
: rem escape = select new values
nexlgoto 1310

: rem other key = display next group

dclose u(dv):close 1 :window 0,0,79,24,1 :end

rem machine code data

data 76,
data 141,
data 220,
data 141,
data 44,
data 141,
data 11 ,
data 160,
data 14,
data 32,
data 208,
data 133,
data 11 ,
data 11 ,
data 240,

44,
0,

240,
0,

13,
0,

169,
0,

208,
12,

246,
250,

32,
145,
224,

11,
255,
251 ,
221 ,
220,
221 ,

13,
32,
15,
11.
88,

169,
3 1 ,

250,
230,

76, 84, 11,
96,169, 8,

173, 0 , 2 2 1 ,
173, 12,220,
173, 0 , 2 2 1 ,

96,133, 250,
133,251, 32,

12, 11,145,
200,192, 2,
145,250, 200,
96, 133, 252,
19, 133 ,251 ,
11,160, 0,

200, 208, 248,
251, 76,102,

169, 0
44, 13
73, 16
96, 120
73, 16
32, 6
3 1 , 11

250, 41
208, 242
192, 7
169, 0
32, 6
32, 12

198, 252
11 , 255

rem print disk details

print "sector size = "sz*256:print:if H or t2 then
print "single sided!!"
ift1 then 1970
print "side 0:":print "min sector #";s1 ,"max
sector #"m1
if t2 then 1990
printprint "side 1 :":print "min sector #";s2,"max
sector #"m2
print: return

Listing 2: Source code (in "Buddy" or "PAL" assembler format) for the
machine language code used in the demo program.

100
110
120
130
140

1581 display t&s burst mode source code

<c> m. garamszeghy 1987

150 pntr = $fa zero page pointer
160 size = $fc number of blocks to read
170 mmu = $ff00 mmu config reg
180 data = $1300 start of data buffer
190 conf = $0d00 start of disk type buffer
200 clock = $dd00 burst clock line
210 d d r = $dc0c burst data register
220 d ic r = $dc0d burst interrupt register
230;
240;
250 » = $0b00
260 .opt 00
270;
280
290

jmptable = *
jmp testdsk

;decimal 2816
;assemble to memory

;analyze disk

The Transactor 31 November 1987: Volume 8, Issue 0 3

300 jmp re'addata ;burst memory read 630 sta (pntr),y ;and stash it
310; 640 and #$0e ;check for errors
320 setbnk = * ;setto bank 15 650 bne exittest
330 Ida #0 660 my
340 sta mmu 670 cpy #2
350 rts 680 bne tes1 ;get next status byte
360; 690 tes2 jsr toggle ;get data byte
370 toggle = » ;toggle data line 700 sta (pntr).y ;and save it
380 Ida #8 710 my
390 tog1 bit d i c r 720 cpy #7 ;check for all done
400 beq tog1 ;wait for icr 730 bne tes2
410 Ida clock 740 exittest = » ;exit disk test routine
420 eor #$10 ;toggle clock 750 Cll ;restore interrupts
430 sta clock 760 rts
440 Ida d d r ;get a data byte 770;
450 rts 780 readdata = * ; burst mode memory read
460; 790 sta size ;number of pages to read
470 reset = * ;init burst mode 800 Ida #<data
480 sei 810 sta pntr ;set pointer to data buffer
490 bit d i c r 820 Ida #>data
500 Ida clock 830 sta pntr
510 eor #$10 ;toggle clock 840 jsr setbnk ;set bank to 15
520 sta clock 850 jsr reset ;start burst mode
530 rts 860 Idy #0
540; 870 real jsr toggle ;get data byte
550 testdsk = * ; burst mode query disk format 880 sta (pntr),y ;and save it
560 sta pntr ;save offset into format buffer 890 my
570 jsr setbnk ;goto bank 15 900 bne real ;end of page?
580 Ida #>conf ;high byte of format buffer 910 dec size
590 sta pntr +1 920 beq exittest ;last page?
600 jsr reset ;start burst mode 930 inc pntr +1
610 Idy #0 940 jmp real ;go get next page
620 tes1 jsr toggle ;get first status byte 950;

CP/M and the M. Garamszeghy
1581 Disk Drive Toronto, Ontario

Upgrade your CI28 CP/M for the new CBM drives

Older versions of C-128 CP/M wil l not fully support the new
1581 disk drive. This is a pity because the large capacity of the
1581 combined wi th its high speed make it an ideal CP /M drive.
Of course, you can mail in the coupon which comes with the
1581 along wi th some of your hard earned cash and get yet
another "upgrade" version of CP/M which does support the
1581.1 already have three different versions of C P / M for my C-
128 (the original plus two "upgrades") so why do I need another
one just to use the 1581? The short answer is that 1 do not.

The first problem involves creating a 1581 CP/M format disk.
This is easiest to do wi th the C-128 in native mode using the
burst mode format command since older versions of CP/M's
FORMAT.COM utility do not work properly wi th the 1581. The
following command string can be used, assuming your 1581 is
device 9:

open15,9 ,15
print#15, ,uO" + chr$(134) + chr$(2) + chr$(79) + chr$(10)

+ chr$(0) + chr$(229) + chr$(1)
close 15

This wi l l format the disk identical to a 1581 DOS disk physical
structure (i.e. 512 byte/sector, 10 sectors track) but without the
directory, BAM, etc. and fil l it with CP/M blank disk bytes ($e5
or dec 229).

Next, wi th a few simple modifications to the CPM + .SYS file, you
can take ful l advantage of the capacity of the 1581 without
forking out for the latest upgrade disk. You can still use the disk
formatted by the method above with CP/M if you do not make
the following mods, but you wil l only be able to fi l l it half ful l .
This mod wi l l not allow you to boot CP/M from the 1581, but it
wi l l allow you use the 1581 once CP/M has been booted from a
1571 or 1541. (In my present set up, the 1571 is device 8 and the
1581 is device 9. CP /M can only be booted f rom device 8
anyway). A note in Commodore's favor is that the CP/M up
grade wi l l allow you to boot from the 1581 if it is connected as
device 8.

The procedure involves changing a few bytes in part of the
CPM + .SYS file know as the "disk parameter block table". This
table, which is described in detail in the "CP/M 3 System Guide"
under section 3.3 BIOS Data Structures on pages 40 to 44,
contains the data for the physical characteristics of the MFM disk

The Transactor

formats supported by C-128 CP/M. The location of the table in
the CPM + .SYS file depends on the version of CP/M that you are
using. The instructions for all three current versions are outlined
below. The locations are summarized in Table 1 and referenced
in the text.

Before continuing, you wi l l need a formatted CP/M disk (C-128
1541 single or 1571 double sided format) containing the CP/M
system files (CPM + .SYS and CCP.COM) and the utility S1D.COM
(or the older DDT.COM or equivalent debugger utility). You can
also include a copy of SHOW.COM to check the results after
wards. The SID.COM program resides on the CP/M additional
utilities disk that comes with the Digital Research CP/M plus
documentation. Several other public domain debuggers are also
available if you do not have SID.

NOTE: USE A BACK UP WORK DISK.
DO NOT DO THIS WITH YOUR ORIGINAL SYSTEM

DISK BECAUSE IT WILL MAKE PERMANENT
CHANGES TO THE OPERATING SYSTEM.

After booting up C P / M , note the version date printed on the
screen. This wi l l be used as a reference for the addresses in
Table 1. Insert your work disk and type in:

sid c p m + .sys < re tu rn>

Note that for clarity, I wi l l use lowercase letters to indicate items
that you type in and UPPERCASE for prompts made by the
computer.

After a few moments, the following status message wi l l be
displayed:

CP /M 3 SID - Version x.x
NEXT MSZE PC END
zzzz zzzz 0100 CEFF

where zzzz is a hexadecimal number based on the version date,
as listed in Table 1. Jot this down for future reference as it wi l l be
needed when saving the changes. The " * " symbol is SID's
command prompt.

Now we are ready to make the changes. The physical format of a
1581 disk is identical to that of the EPSON QX-10 (10 sectors

November 1987: Volume 8, Issue 0 3 33

http://FORMAT.COM
http://CCP.COM
http://S1D.COM
http://DDT.COM
http://SHOW.COM
http://SID.COM

per track, 512 bytes per sector, 2 sides). The only difference is in
the number of tracks per side (80 for the 1581 compared to 40
for the EPSON). It makes things easier to start wi th the EPSON
parameters and change them a bit rather than create a whole
new entry. (The modifications wi l l still permit full read compati
bility with the EPSON disks and nearly full write compatibility
on the 1571. The incompatibility in writ ing is only that the
operating system may attempt to write more to the EPSON disk
than it can hold, thus causing a disk error if you try to write to an
almost full disk).

When SID prompts wi th:

snnnn

nnnn 45

Type in a quote (") followed by 3 spaces then 1581 and 3 more
spaces and a return. At the next prompt, type in a period to
return to the main SID prompt. Type in: dyyyy <re turn> again
to check your changes and the following should be displayed:

Next type in:
y y y y : 50 00 04 OF 00 86 01 7F 00 CO 00 20 00 02 0 0 02 P
y y m m : 03 OA 20 20 20 31 35 38 31 20 20 20 49 A5 0 0 81 . 1581

dyyyy < r e t u r n >

where yyyy is taken from Table 1. This is SID's d or display
memory command. Note that in this, and all other SID com
mands, there is no space between the command letter and the
command parameters. For example, d yyyy would produce an
error prompt.

SID wil l respond with a display similar to:

y y y y : 50 00 04 OF 01 B D 0 0 7F 00 CO 00 20 00 02 00
y y m m : 03 OA 45 70 73 6F 6E 20 51 58 31 30 49 A 5 00

02 P
81 . . E p s o n QX10

plus some more rows of similar hexadecimal numbers followed
by the " * " prompt. The next step is to change some of the bytes.
The ones that are changed are referred to in Digital Research's
documentation as EXM (extent mask - 1 byte), and DSM (total
drive storage - 2 byte word). These are the two parameters
which tell the system how much data it can store on a disk. The
change is done with SID's s or set memory command. Type in:

sxxxx < re tu rn>

where xxxx is taken from Table 1. SID wil l respond wi th:

xxxx 01

The 01 is the current value of the byte at this location. Change it
to the desired value by typing in 00 followed by return. SID wil l
then prompt for the next byte:

x x x l BD

Type in 86 followed by return. SID wil l then prompt for the next
byte:

xxx2 00

Change this by typing in a 01 followed by return. That com
pletes the major changes. At the next prompt

xxx3 7F

Enter a period "." followed by return. This should bring back the
main SID prompt " # " . If you want to change the disk type name
from Epson QX10 to say 1581, use the s command again:

The final step is to save the changes. This is done with SID's w or
write command:

w c p m + .sys 0100 zzzz < re tu rn>

Once this has been done, your new CP/M system is ready for
action. Re-boot the computer (you need to boot the modified
CP/M system) and turn on your 1581 as drive b: (device 9). You

can now PIP some files to a
formatted 1581 disk (as out
lined above) and use it at wi l l
for all file storage. You can
check the capacity of the

drive by using the SHOW.COM utility:

show b:

wi l l display the amount of space currently available on the 1581.
If it does not give something like 800k read write space free wi th
a formatted blank disk, then your changes may have gone awry.
Double check the changes outlined above and try again.

The procedure outlined above can also be done using the RAM
disk (drive m:) as the working drive if you have a 1750 RAM
expander. In this case, you would PIP the required files to the
RAM disk, do the modifications and PIP them back again to your
work disk. The same method can be used to alter the disk
parameter table to support other CP /M disk formats on the
1571, such as Televideo, Xerox, DEC, etc which are not nor
mally supported by C - l 2 8 CP/M. In this case, 1 would suggest
that you consult the explanation of the table parameters in the
CP/M System Guide. You also need to have a thorough under
standing of the disk format that you wish to implement.

Table 1: Summary of CPM + .SYS file addresses

Values by CP/M Version Date
Parameter* 1 Aug 85 6 Dec 85 8 Dec 85

zzzz 5d00 6400 6400

yyyy 1400 2161 2161

xxxx 1404 2165 2165

nnnn 1412 2173 2173

Note: Refer to text for explanation of parameters

The Transactor 34 November 1987: Volume 8, Issue 0 3

http://SHOW.COM

Programming
The 1541

Frank DiGioia
Stone Mountain, GA.

.. .Now, even the weekend hacker can enjoy the thrills and
chills of being in complete control of the disk drive. . .

There was a time when the idea of programming the Commo
dore 1541 disk drive was little more than a whimsical desire of
late night, d ie-hard hackers. But now, programs ranging from
word processors to new operating systems are uti l izing the free
RAM in the 1541 to reprogram the drive, allowing it to perform
tricks no one previously would have dreamed possible. A wealth
of information concerning the inner workings of the 1541 has
become available to the public. Now, even the weekend hacker
can enjoy the thri l ls and chills of being in complete control of the
disk drive. This article is intended primarily for those who just
want the chance to try some easy-to- type- in experiments with
their 1541 disk drives. I am, however, including some detailed
technical information so that those readers who desire to experi
ment beyond what is presented in this article may be better
equipped to do so. In the following paragraphs 1 w i l l provide
brief coverage of the Job Queue, the M-R command, the M-W
command and the M-E command. We wil l wrap things up with
an example machine language program you can execute in your
1541 (if you dare!).

The Memory Commands

We wil l start our adventure with the memory commands. Each
of the memory commands (in fact, ALL of our communications
with the drive) wi l l be sent over the error channel *15 (I'll
always use file number 15 in my examples). These commands
are all covered in your 1541 manual, but we wi l l focus here on
their use in programming the disk drive. Let us begin wi th the
Memory-Read (M-R) command. The M-R command allows you
to peek at the contents of the disk drive's internal memory -
both RAM and ROM. To use this command you simply give the
address (in l o /h i format) of the first byte you wish to read. If you
want to read more than one byte, the address must be followed
by the number of consecutive bytes (up to 255) you wish to
receive. If you are working from BASIC these parameters must
be sent as character codes. The general format of the command
is

PRINT#15,-M-R"CHR$(lo)CHR$(hi)CHR$(n)

Once you issue the command to the drive, you can read the
result over the error channel, via GET*, as character data. Here
is a useful subroutine which utilizes the M-R command to tell
weather or not a disk is write protected. You might use this
routine in your own programs in order to warn the user to wr i te -

protect the program disk or to unwrite-protect the data disk.
The routine works by examining bit 4 of location $1C00 (7168)
in your drive's memory. This location is the main control register
for the 1541.

400 O P E N 1 5 , 8 , 1 5 , ' M - R ' + CHR$(0) + CHR$(28)
410 GET#15,A$:A = ASC(A$ + CHR$(0)) :CLOSE15
4 2 0 W P = A A N D 16:RETURN

If WP = 0 then the disk is write protected.

The Memory-Write (M-W) command is used to poke data into
the 1541 's RAM. This command is used to set values in various
memory locations and to transfer programs from the C64 to the
1541. The general format of the command is

PRINT#15 , -M-WCHR$(lo)CHR$(h i)CHR$(n)<da ta> .

As you can see, this command uses the same parameters as the
M-R command (you may NOT omit the length parameter)
except you additionally place the data to be sent on the com
mand line. The data may be a single character code or a string of
up to 34 characters. The following routine wi l l turn the 1541 's
motor on by READING the contents of the main control register,
SETTING BIT 2 and WRITING the result back to the control
register. The motor is turned off again by clearing bit 2.

Turn motor on:

10 OPEN 15 ,8 ,15 , -M-R-+ CHR$(0) + CHR$(28)
20 GET#15,A$:A = ASC(A$ + CHR$(0))
3 0 X = A O R 4
40 PRINT#15,"M-W"CHR$(0)CHR$(28)CHR$(1)CHR$(X)
50 CLOSE 15

To turn the motor off, replace line 30 wi th:

3 0 X = A A N D 2 5 1

You may have noticed that both of the routines above work by
reading or changing a bit in the control register located at $ 1 COO
in the 1541. Since this is a fairly important register I wi l l
interrupt myself for a moment to list what each bit in the register
does.

35 The Transactor November 1987: Volume 8, Issue 0 3

REG at $1 COO BITS: 76543210

BIT 0 - Bits 0 and 1 are used to move the drive head
BIT 1 - See example program at end of article.
BIT 2 - Turn motor on/of f
BIT 3 - Turn red light on/of f
BIT 4 - Write-protect indicator
BIT 5 - Recording density bit 1
BIT 6 - Recording density bit 2
BIT 7 - Sync byte indicator

Okay. . . back to the memory commands:

The MEMORY EXECUTE (M-E) command is like a SYS com
mand for any disk drive routine in ROM or RAM. Simply give the
address of the routine in L O / H I format. The following example
wi l l execute the ROM routine which initializes the diskette in the
drive. It has the same effect as typing OPEN15,8,15,"I".

10 OPEN15,8 ,15 :PRINT#15, 'M-E-CHR$(5)CHR$(208)
:CLOSE15

Digging Deeper

The memory commands are nice for little tricks such as the ones
in the example programs above. When it comes to running
"real" jobs in your drive, however, it is often convenient to use
the job queue. Some people tend to be scared off by the mention
of the job queue, but let me try to explain how jobs are executed
in the 1541 and you wi l l then see that using the job queue is
really just a shortcut to programming the disk drive.

Allow me to present three short paragraphs of background
material before we jump into using the job queue.

The 6502 in your disk drive has a split personality. Part of the
time it is acting as the interface processor (IP) and part of the
time it is acting as the floppy disk controller (FDC). For the sake
of brevity, I wi l l just refer to the IP and FDC as though they were
two completely different processors running at the same time,
since this is the illusion that the designers of the 1541 intended
to create. (In fact, in earlier Commodore dual drives like the
4040 and 8050, there were two separate processors - the 1541 's
DOS is closely based on the DOS from the early drives. -Ed.)

The interface processor is primarily responsible for those tasks
having to do with communication between the computer and
the disk drive, and between the disk drive and the user. In other
words, it is responsible for parsing disk commands, transferring
data over the serial bus and operating the red light on the front of
your drive. In addition to its communication jobs, the IP is also
responsible for the "soft" side of file management (ie. allocating
buffers, opening files, keeping track of the BAM, etc).

The floppy disk controller, on the other hand, concerns itself
primarily with those tasks that are directly related to reading or
writ ing to the disk, or which directly control the hardware of the
drive. These tasks include moving the drive head, cod ing/

decoding GCR data, reading and wri t ing GCR data f rom/to the
disk surface, formatting a diskette and various other hardware
related tasks. (Technical note: GCR stands for Group Coded
Recording. Al l data is converted to GCR format before being
written to the disk surface. The GCR coding scheme insures that
no data wi l l ever produce bit patterns capable of confusing the
disk hardware).

The Job Queue

Does it sound as though the FDC routines might be complex or
difficult to use? Well, for the most part, they are. Fortunately for
us, there is an easy way to get at the FDC routines and that is
through the JOB QUEUE.

About 100 times per second, the FDC scans the job queue to see
if there is any work for it to do. When you give the drive a
command, the IP parses it and breaks it up into a series of JOBS.
It drops the jobs into the job queue and the FDC executes them.
Bossing the FDC around is as easy as simply dropping a number
into the job queue. Here's what you need to know:

The JOB QUEUE is simply locations $00 to $05 in your disk
drive's zero page memory. We wi l l only concern ourselves wi th
the first four positions ($00 to $03). Associated with each
position in the job queue are two bytes that tell the FDC which
track and sector the job should act on. Also associated with each
of the first four positions in the job queue is a data buffer that is to
be used by the job. I think now would be a good time for a table:

Job Queue
Position

$0000
$0001
$0002
$0003

Location of
TR/SE Info

Location of
Data Buffer

$0006/$0007 $0300-$03FF
$0008/$0009 $0400-$04FF
$000A/$000B $0500-$05FF
$000C/$000D $0600-$06FF

There are only seven job codes to choose from when using the
job queue.

HEX Code DEC Code Job Code Description

$80 128 Read a sector
$90 144 Write a sector
$A0 160 Verify a sector
$B0 178 Seek a track
$C0 192 Slam head against end stop
$D0 208 JMP to start of buffer
$E0 224 Execute program in buffer

To use the job queue you just have to make three decisions: (1)
Which Job should I run? (2) Which buffer should it use? (3)
Which track and sector should it act upon?

It is important that you realize that the FDC wil l begin executing
your job the moment you place the job code into the queue. It is
therefore important that you place the track and sector informa
tion (when required) into the proper position of the TR/SE table
before dropping a code into the job queue.

The Transactor 36 November 1987: Volume 8, Issue 0 3

When the FDC finishes the job you asked it to perform, it writes
a RETURN CODE in the same job queue position where you left
the job code. Job codes are all greater than or equal to $80 (128)
and return codes are always less than $80. This distinction is
how the FDC tells whether a number in the queue is a job
request or a return code. You can use the return code for two
purposes. First of all, it tells you the job has completed (when a
number less than 128 is in the queue) and secondly, it tells
whether or not the job completed successfully. If the return code
is 1, the job was successfully completed - any other return code
indicates that the job was not successful.

The main advantage (and danger) in using the job queue is the
fact that no error checking is done on the track and sector you
supply in the TR/SE table. This means that you can read and
write beyond the normal 35 tracks of a diskette. While I have not
been too successful in my attempts to write data beyond track
35 (probably because I did a sloppy job of formatting these
tracks) I have had success in READING data beyond track 35.
The BASIC program called READ ANY SECTOR found at the
end of this article wi l l allow you to read data from any sector of a
disk from track 1 to track 40. I have used this program to read
"secret" data on some protected diskettes. The program is
capable of reading "under" errors and wi l l allow you to view
data from any sector on your disk whether the sector contains
ASCII data, screen codes or machine language. The program
wil l 'hang', however, if you try to read a track that has not been
formatted at al l .

Executing Programs In The Drive

The last topic I would like to cover in this article is not for the
faint hearted. It concerns actually programming the drive be
yond simply using the job queue. It should be mentioned here
that any mistakes made at this level of programming could
easily destroy data on any disk that happens to be in the drive
and could, in fact, cause harm to your drive itself.

The main power of the job queue, as mentioned earlier, is that
you can do normal tasks (reading, writ ing, etc) without being
limited by error checking routines. You are still l imited, how
ever, to the seven jobs listed above. If you want to do something
a bit more radical, such as writing a new formatting routine,
creating exotic protection techniques and so on, you wi l l find
that the job queue does not afford you the power that you need.
You wil l have to go on to the less-travelled path of programming
the disk drive. Before you can even begin th ink ing about
programming the disk drive, however, you need a complete
zero-page memory map of the drive and a listing of the ROMs.
(The Transactor plans to publish Jim Butterfield's commented
Disassembly of the 1541 and 1571 ROMs in book form at some
time in the near future. If you are impatient, there are several
other good books currently available as I'm sure every reader is
aware.)

As an example of programming the disk drive, I wrote a
program called DISK DESTROYER. I chose this program be
cause it is simple, short and can hardly fail to work. As the name
implies, this program wi l l destroy whatever disk happens to be

in the drive when the program is run. The program wi l l not
physically harm the diskette but wi l l scramble the contents so
badly that the drive light wi l l not even come on when you try to
load a directory from it. This program is useful mainly for data
security. It wi l l completely purge a disk in about 10 seconds
(compared to a minute and a half to format a disk) and wi l l not
leave a trace of the original data. This capability can be useful for
destroying old data disks or for creating a program which can
only be run once. As an example of the latter, suppose you wish
to have a friend try out a program you are writ ing. If you do not
want your friend to be able keep a copy of the program, you can
hide disk destroyer in an unused sector on the diskette (see the
program DEATH SECTOR at the end of this article). At the end of
your boot program you can execute disk destroyer wi th a
BLOCK-EXECUTE command and disk destroyer w i l l wipe out
the disk in a matter of seconds.

Disk Destroyer

Disk Destroyer works by stepping the drive head back to track
one and then calling a ROM routine which effectively destroys
the track. Disk Destroyer then moves the head to the next track
and repeats itself until it reaches the ending track. You should
note that the current track number is stored in location $22 and
that the drive head is moved by rotating bits 1 and 2 of the main
control register ($1C00).

At the end of this article you wi l l find a BASIC listing called
DEATH SECTOR and the commented assembly language source
code for Disk Destroyer. DEATH SECTOR wil l write Disk De
stroyer onto any sector of your diskette in a form which can be
executed with the Block-Execute (B-E) command. After the
sector is writ ten, DEATH SECTOR wil l print a command line on
your screen which can be used to destroy the disk. If you wish to
destroy the disk immediately, move your cursor to the line
which DEATH SECTOR just printed and hit return. If you don't
wish to destroy the disk right now, write down the line that
DEATH SECTOR printed. This command line can be used at any
time to destroy your disk in a matter of seconds. The format of
the BLOCK-EXECUTE command to destroy a disk which con
tains a death sector is as follows:

O P E N 1 5 , 8 , 1 5 : O P E N 2 , 8 , 2 , W : P R I N T # 1 5 ,
•B-E"2;0;T;S:CLOSE2:CLOSE15

T and S are the track and sector where DISK DESTROYER is
hidden on the disk. Note: It is very important that you open
buffer , # 0 " rather than the usual OPEN2,8,2 , , # \

Warnings & Hints

Although I don't wish to scare off any potential 1541 program
mers, you need to understand, before attempting to program
your drive, that it is possible to seriously harm your drive if you
aren't careful (and perhaps even if you are) wi th your work.
Although the programs presented here have been tested on my
equipment, you should be careful the first time you run them on
yours in case you made an error in typing or in case an error was
made in typesetting this article. In any case, neither I nor The

37 The Transactor November 1987: Volume 8, Issue 0 3

Transactor can accept any liability for damages of any type
resulting from the use or misuse of these routines. Therefore you
are well advised to be certain that you understand what is going
on before using any programs presented with this article.

Here are some guidelines which may save you a hefty repair bil l
in case things DO go wrong when you are programming your
disk drive. First of all, keep your hand on the disk drive's power
switch when testing a program. TURNING OFF THE COM
PUTER WILL NOT STOP THE PROGRAM EXECUTING INSIDE
THE DRIVE. You must turn the drive itself off to stop it.
Secondly, if something DOES go wrong and the drive doesn't
seem to work properly try typing

OPEN15 ,8 ,15 ,T :CLOSE15

while the drive's door is open and no disk in the drive. Then put
a disk that you know to be good (but make sure you have a
backup of the disk) into the drive and see if the drive can read it.
It is quite likely that this wi l l f ix any problems you may
encounter provided you have a quick hand on the drive switch.

In writ ing and testing Disk Destroyer, I made two mistakes - one
that sent the drive head off searching for track 100 and another
which caused it to try to step backwards 255 tracks. Neither of
these errors caused any damage to my drive although the
repeated knocking caused by the drive head trying to move
outward 255 tracks could have sent me to the repair shop if I had
not quickly turned off the drive when I heard the buzzing sound
of the drive head hammering against the end stop. The attempt
to find track 100 simply required me to use the line of code given
above to initialize the drive - pull ing the read/write head back
into familiar territory.

One last word of wisdom is to turn off your stereo, drive fan or
whatever noisy appliance happens to be running while testing
your drive routines since sound is your key indicator of some
thing going wrong. Each time the head moves by one track, you
should hear a slight cl icking sound. If you hear it move more
than 40 tracks you know something must be wrong. Likewise, if
you hear the head slamming against the end stop you know to
switch off the drive FAST.

While you should be aware of the potential to damage your
equipment, it is my experience that a quick hand on the drive's
power switch should make programming your disk drive almost
risk free.

Listing l :This program wi l l create a "death sector" on the track
and sector of your choice on the disk currently in the drive, and
show you the command required to activate it. When the
command is given at any time when that disk is in the drive, the
contents of the disk w i l l be completely destroyed within ten
seconds. This provides an easy way to destroy sensitive data in a
hurry. (We call it T h e Oliver North Special'.)

The actual program that the drive executes to destroy the disk
can be seen in assembler form in Listing 3.

CK
O M
FP

A M
CK
EN
JA
PG
IH
LC
C N
A B
PH
M M
FD
NG
KM
NF
DK
DE
OC
GC
IE

OO
Kl

KM
EC
HF
GJ
CI

GA
IH
ID
EJ
OD
DM
HJ
FF
IC

PN
BP
IJ

DH
HL
H D
MK
OG
DG
CI
10

NA
PB
HK
BJ
KA
PF
KK
KC
EM

100 rem *
110 rem
120 rem

death sector
f rank e. digioia

130 rem *
140 rem the transactor vol 8 issue 3
150 rem *
160 data 'warn ing! ! ! this p rogram w i l l '
170 data"create a sector on your disk "
180 data 'which will cause the disk to "
190 data 'se l f -dest ruc t if b - e c o m m a n d "
200 data' is issued on that sector . "
210 rem *
220 read a$,b$,c$,d$,e$: rem read warn ing
230 r$ = chr$(13):pr int a$rbrcrdre
240 gosub570 : rem verify disk name
250 open2,8,2,"#0": rem open buffer 0
260 p r in t#15 , , b-p" ;2 ;0 : rem start of buf
270 for i = 1 to 146: read ml:ck = ck + ml
280 pr int#2,chr$(ml); :next:rem fill buf
290 data 234, 234 , 234 , 169, 1 ,133, 6 , 1 6 9
300 data 0, 133, 7, 173, 142, 3, 174, 143
310 data 3 , 1 7 2 , 1 4 4 , 3 , 1 4 1 , 0, 3 , 1 4 2
320 data 1, 3 , 1 4 0 , 2, 3 , 1 6 9 , 2 2 4 , 1 3 3
330 data 0 , 1 6 5 , 0, 4 8 , 2 5 2 , 9 6 , 1 6 5 , 34
340 data 240, 4 , 2 0 1 , 3 6 , 1 4 4 ,
350 data 133, 34 , 3 2 , 1 0 2 , 3,

34 , 208 , 246, 230,
3 2 ,

360 data 198,
370 data 253,
380 data 176,
390 data 109,
400 data 1 4 1 ,
410 data 3 , 1 6 9 ,
420 data 2 8 , 2 0 2 ,
430 data 232, 138,
440 data 0, 28 ,

62 ,

4 , 1 6 9 , 46
3 2 , 1 0 2 , 3
34 , 32 , 163

0 , 2 5 4 , 1 6 5 , 3 4 , 2 0 1 , 3 6
1 1 , 2 3 0 , 34 , 3 2 , 1 0 9 , 3, 32

3, 76, 62 , 3 , 1 7 3 , 1 4 1 , 3
3 , 1 4 1 , 63, 3 , 1 4 1 , 64
1, 7 6 , 1 0 5 , 2 4 9 , 1 7 4 , 0

7 6 , 1 1 3 , 3 , 1 7 4 , 0, 28
4 1 , 3 , 1 4 1 , 1 4 5 , 3 , 1 7 3
4 1 , 2 5 2 , 1 3 , 1 4 5 , 3 , 1 4 1

450 data 0, 28 , 160, 5, 162, 255, 202, 208
460 data 253, 136, 208 , 250 , 96 , 234, 76, 38
470 data 3, 0

480 if c k < > 1 4 4 3 2 then p r i n f b a d data":stop
490 pr int#15,"u2 - ;2;0; t ;s: rem write blk
500 p r in fuse this line to erase disk:"
510 print ' [down]open15,8 ,15 :open2,8 ,2 , " ;
520 print chr$(34)"#0"chr$(34)":print#";
530 print "15, , chr$(34)"b-e"chr$(34) ;
540 print "2;0;";t;";"s;":close15:close2"
550 c lose15:c lose2:end: rem f inished!
560 rem *
570 rem * * * * * read disk name * * * * *
580 rem *
590 open15,8,15, ' i0" : rem refresh bam
600 rn$ = chr$(144) + chr$(7) + chr$(16)
610 pr in t#15,"m-r" rn$: rem point to name
620 fori = 1 to16 :ge t#15,p$:n$ = n$ + p$:next
630 print"[2 down jd i sk name: ' ;n$
640 input" [down]wr i te death sector ' ;yn$
650 if left$(yn$,1)<>"y" then end
660 pr in t " [down]where d o you want death sector?"
670 inpu f t rack ";t: input"sector ";s
680 return

The Transactor 38 November 1987: Volume 8, Issue 0 3

Listing 2: Examine the data in any sector on a disk, including
those beyond the normal maximum of 35.

CK
AK
AB
A M
CK
EN
EL
OC
O M
LK
LN
CO
PE
PA
CN
KL
NC
O M
IN
PB
BE
BB

IB
EN
KD

II
0 0
A N
Bl

EM
PA
IN

CG
EN
DC
AE
BE
DD
DB
NH

100 rem *
110 rem * * * read any sector * * *
120 r e m * * * by frank digioia * * *
130 rem *
140 rem the transactor vol 7 issue 6
150 rem *
160 open15,8 ,15 , - i 0 "
1 7 0 t - 1 : s - 1 : x - 0 : d i m a(255)
180 ts$ = " m - w " + chr$(6) + chr$(0) + chr$(2)
190 sj$ = "m-w" + chr$(0) + chr$(0) + chr$(1)
200 input"[clr]track";t
2 1 0 i f t < 1 o r t > 4 0 t h e n 200
220 input"sector";s:if s<0 then 220
230 print#15,ts$;chr$(t)chr$(s)
240 pr int#15,sj$;chr$(176):rem d o seek
250 g o s u b 420: rem await complet ion
260 print#15,ts$;chr$(t)chr$(s)
270 pr int#15,sj$;chr$(128):rem d o read
280 gosub 420: rem await complet ion
290 pr in t#15, 'm-r 'chr$(0)chr$(3)chr$(255)
300 print"[clr] ":fori = 0to255:get#15,a$
310 a(i) = asc(a$ + chr$(0)):print a$;:next
320 p r in fh i t any key for screen codes"
330 poke198,0 :wa i t198 ,1 :ge ta$:p r in f [c l r] [down]
340 fori = 0 to255:poke1024 + i,a(i):next
350 pr int ' [5 down jh i t a key for ascii codes"
360 poke198,0:wai t198,1:geta$:pr int" [2 d o w n] "
370 fori = 0to255:pr int a(i);:next
380 pr int#15," i0":c lose15:end
390 rem *
400 rem wait for activity complete
410 rem*
420 fori = 1to3000:next : rem initial delay
430 pr int#15,"m-r"chr$(0)chr$(0)
440 get#15,a$:a = asc(a$ + chr$(0))
450 if a = 176 then pr int 'seeking track"
460 if a = 128 then p r in f read ing sector"
470 x = x + 1 :if a > 1 2 7 and x<11 then 4 2 0
480 if a = 1 then print"okay":x = 0:return
490 print"error!!!":print#15,"u:":stop

Listing 3: Assembler source code for the drive-resident pro
gram to destroy a disk. This code is written into the 1541 's RAM
by "Death Sector" in Listing 1.

KN
HB
OO
JJ
HI
MA
KA
AC
CP
HI
BJ
CE
Gl
NJ

100
110
120
130
140
150
160 . = $0300
170 ;
180 entry
190
200
210
220
230

disk destroyer/src

frank digioia
09/28/86

nop
nop
nop
Ida #$01
sta $06
Ida #$00

;not relocatable!!!

track 1
set track
sector 0

PM 240 sta $07 ; set sector
OK 250 Ida jmpins ; copy jmp instr to
EE 260 Idx jmpins+1 entry point, since
DC 270 Idy jmpins+ 2 execution will jump
KC 280 sta entry ; to entry as soon as
LB 290 stx entry + 1 the $e0 is placed in
BP 300 sty entry+ 2 the job queue.
CH 310 Ida #$e0 job code = execute
OF 320 sta $00 place in job queue
PH 330 wait Ida $00 ; give i t a fewmi l i -
FB 340 bmi wait seconds to kick in.
KE 350 rts
ON 360
AP 370 purge = *
El 380 Ida $22 get current track
HF 390 beq * + 6 zeroprintprintprint
EJ 400 cmp #$24 is it bigger than 36
GJ 410 bcc back no/go ahead & move
KB 420
JP 430 Ida #$2e ;set track to 46
DD 440 sta $22 ;that should fix it
ID 450 ;

CK 460 back = * step head back to trak 1
IB 470 jsr step step head back 1/2 trak

CC 480 jsr step step head back 112 trak
HF 490 dec $22 deer current track
OG 500 bne back until at track zero

II 510 inc $22 set track to 1
OH 520 ;
NA 530 wipe jsr $fda3 wipe track
JO 540 jsr $fe00 set read mode on
OC 550 Ida $22 get current track
BK 560 cmp #36 bigger than 35print
FL 570 bcs finish done/no problem
LP 580 inc $22 bump track
AM 590 jsr stepb move 112 track
KM 600 jsr stepb move 112 track
DE 610 jmp wipe wipe next track
CO 620 \

Ol 630 finish - * cleanup and get out
JE 640 Ida nopins get nop instr
IJ 650 sta wipe render code harmless

DD 660 sta wipe + 1
PD 670 sta wipe + 2
FC 680 Ida #$01 set return code
PG 690 jmp $f969 main error routine
CD 700
GA 710 step = * step head back 112 trk
Dl 720 Idx $1c00 get control reg
PH 730 dex rotate low order bits
KJ 740 jmp stepb+ 4
EG 750 ;
AP 760 stepb — * step head frwd 1/2 trk
FL 770 Idx $1c00 get control reg
GN 780 inx rotate low order bits
HG 790 txa put in .a
EK 800 and #$03 isolate low order bits
DG 810 sta temp save it
HC 820 Ida $1c00 get control reg again
FG 830 and #$fc clear low order bits
OP 840 ora temp set lower order bits
PE 850 sta $1c00 set control reg
CN 860 ;
HJ 870 Idy #$05 timing loop iterations
FH 880 Idx #$ff inner loop timing
GM 890 delay dex allow head to settle
JH 900 bne delay inner loop
JG 910 dey outer loop
IF 920 bne delay continue
Ol 930 rts
CC 940 ;
FN 950 nopins nop this is data
AN 960 jmpins jmp purge this is data
JA 970 temp .byte $00 working storage

The Transactor 39 November 1987: Volume 8, Issue 0 3

Auto Transmission Doug Resenbeck
for the Commodore 64 Rockford, IL
This program developed out of necessity. Over a period of time I have I hope all of you wil l find this utility as useful as I have.
collected programs that convert Basic programs to make them auto-run -
when you LOAD them with ' ,8 ,1 ' they will automatically RUN upon C64 Auto Transmission:
completion of the LOAD. Some of these programs - Jim Butterfield's Remove Auto-RUN from BASIC programs.
'LockDisk' is one - also alter system vectors in such a way as to cause the
program to re-RUN whenever READY mode occurs (due to an error, or the FA 10 rem * this program changes auto-run
program ending). BK 20 rem * programs back to their

EF 30 rem * original basic format
This is a good feature in most cases, but not always. Suppose you write a LI 40 rem * written by doug resenbeck 10/86
nice program. You RUN it and test it and it seems to be all you intended it to ND 50 printchr$(147)chr$(17)chr$(17)
be. So you LOAD up your favorite auto-run creator and soon your DA 60 print' name of basic auto-run program"
program has auto-run capability. Well, you no longer need the original JA 70 print:inputar$:t = len(ar$)
Basic program, so you scratch it in favor of keeping only the auto-run GA 80 gosub440
version. If you're like me, sooner or later you'll want to make some EL 90 ifs = 1thens = 0:goto50
changes to that program. Sorry, it's an auto-run program now. If you PG 100 printchr$(147)chr$(17)chr$(17)
LOAD it ' ,8,1 ' it wil l start running on its own. Depending on built in PF 110 print" new name with auto-run removed"
safeguards, you may or may not be able to stop your program for editing PB 120 print:inputua$:t = len(ua$)
purposes. If you LOAD it ',8' the program remains unlistable. This is the ID 130 gosub440
problem I encountered. GD 140 ifs = 1 thens = 0:goto100

PF 150 printchr$(147)chr$(17)*auto-run "ar$
My first approach to a solution was to look through all of my Commodore BM 160 printchr$(17)"to"
related magazines for a program to reverse the auto-run process. No luck EE 170 printchr$(17)"un/auto-run "ua$
there. It seemed apparent I would have to tackle the problem from the FH 180 printchr$(17)"please wait"
ground level. I went through each of my auto-run creating programs, BM 190 open2,8,2,ar$ + ",p,r"
analyzing Basic listings and disassembling machine code. My efforts KP 220 open8,8,8,ua$ + ",p,w"
turned up similarities in ALL of the auto-run creating programs. BM 250 get#2,a$,b$

DC 260 ifa$ ="" thena$ = chr$(0)
First, lower memory vectors are written to the disk, with changes that wil l IH 270 a = asc(a$)
later implement the auto-run feature. Next, all of the remaining memory LD 280 ifb$ = " thenb$ = chr$(0)
between the vector table and the start of Basic, including screen memory, LK 290 b = asc(b$):c = a + 256*b:d = 2049-c
is written to the disk. Finally, the Basic program itself is also written. This BO 300 i fd>0then320
explains why the program is unlistable when it is LOADed ',8': the lower BE 310 printchr$(147)chr$(17)"program is not a
memory vectors are at the start of Basic program space. It also explains basic au to - run program":goto380
how auto-run programs are implemented. When the program is loaded LK 320 f orx = 1 tod: get#2, a$: next
' ,8,1 ' , the program starts LOADing over the top of the vector table, making LF 330 print#8,chr$(1);
its own changes in the process. The original Basic program falls right back KH 340 print#8,chr$(8);
where it originally sat. Upon returning to READY mode, the altered BM 350 get#2,a$:sw = st:ifa$ = " thena$ = chr$(0)
vectors cause it to begin running. LC 360 print#8,a$;:ifsw = 0then350

EL 370 printchr$(147)chr$(17)"done"
Something else of importance: No matter where in memory the load KE 380 close2:close8
begins, its address is recorded on the disk with the program. Comparing ME 390 gosub480
this address with the start of Basic at 2049 (Basic programs start loading at GE 400 ife>0then500
2049) the difference wil l equal the number of bytes separating the DH 410 printchr$(17):input"more";n$
beginning of an auto-run program with the original undoctored version. OF 420 ifn$ = "y" then50

OK 430 end
Now to write a utility to do the job. First, INPUT the LOADing address of CG 440 ift<17thenreturn
the auto-run program and subtract that from 2049. GET that many bytes IC 450 printchr$(17):print"filename too long"
with a FOR-NEXT loop. Next, create a new program on disk by first OH 460 forx = 1 to1500: next: s = 1
writingaCHR$(l)andaCHR$(8)(the new LOAD address in low byte/high CP 470 return
byte format) then copying the Basic portion of the auto-run file one byte at PH 480 close15:open15,8,15
a time until the whole file is transferred. 10 490 input#15,e,e$,tr,s:close15:return

HN 500 pr infdisk error #";e
Now for the test. I wrote a one line program and saved it to disk. Then I PI 510 printe$
used all of the auto-run creator programs I had on it. The test was to see if FJ 520 prinftrackMr
my program could convert each of these auto-run programs back into Ml 530 print"sector";s
their original Basic format. The test was a success! KO 540 close2:close8

The Transactor 4 0 November 1987: Volume 8, Issue 0 3

Common Code Jack R. Farrah
Cincinnati, Ohio

...It sounded like a job for THE COMPUTER!

The Scenario:

That nifty machine language program you've labored over for
weeks is finally complete. A natural for submission to The
Transactor, you think. But wait! Your programming technique
(perhaps like mine) is a bit long winded. Written and debugged
in sections that were thought out independently, it works but it's
extremely long. What if it's too long? Would it have a better
chance if it were 100, 200, 500 bytes shorter? Frantically you
scan the code, looking for things to eliminate, shorten or
combine. No good! Your eyes keep glazing over at the task. After
all, you've been at this for weeks and the thought of a major re
write is not pleasant.

This is not fiction friend. It happened to me. After all the
searching, all the cutting out of title screens, help screens and
superfluous user prompts, I still had over 3500 bytes of code. In
desperation my mind turned to subroutines. Maybe, amongst
these thirty pages of assembly, there were identical sections of
code that I could consolidate into subroutines to shorten the
program. But how to find them? It sounded like a job for THE
COMPUTER!

The Solution:

A typical, knee-jerk reaction from a programming buff you say?
Well, perhaps, but there's nothing that pumps me up more to sit
down and write a program than to perceive a tangible need.
More so if its my own! Common Code is my answer to this need.
Here's what it does. After loading and running, the program
asks you for a starting address in memory, in hexadecimal (do
not include $'s). Next, an ending address. Enter <RETURN>
after each input. Then you are asked whether you want the
program output to go to the screen or your printer. Enter " s " or
"p " . If you are specifying a printer, it must be turned on before
hitting the " p " . Finally, you are given the opportunity to specify
how many bytes of identical code you want the program to find.
Any number between 00 and FF (2 and 255) is acceptable. A n
00 or 01 entry wi l l exit you from the program. The default
setting is 7 bytes and is displayed at the prompt. Enter <RE-
TURN> only to accept the default.

From here on the program begins its search and display rou
tines. Each program byte is taken in turn as the beginning of a
potential subroutine. It is checked against the following bytes in
the program. If a ful l match is found, the start address is printed,
then each matching group's start address is printed indented
below it. There's no requirement that you search only between
the "real" start and end of your program. You can limit the
The Transactor 41

search to those areas where you want to concentrate. Assuming
your program has text and or data tables at the beginning or
end, enter addresses that omit those areas of code.

The checking routines run fast and depending on the program
length, the byte length being checked and the number of
matches found, the output to your screen may flash by too
quickly. You can pause the listing (and the search) by hitting the
space bar. Restart by hitt ing it again. Be aware that the space bar
is only checked during the printout routine.

When complete, the default byte count is reinstated, the printer
file closed and you are returned to BASIC with a READY prompt.
Al l that's left is for you to check the code from an assembled
program printout, against the matching groups. Pick the viable
subroutines and revise your code.

The Works:

Common Code is wri t ten to reside in the normal BASIC portion
of memory so that is has the least possibility of memory conflict
with the machine language programs you wi l l check wi th it. The
functioning of the program is relatively straight forward. There
are four main addresses tracked and or updated during the
course of execution. The Start Address you enter is the begin
ning byte to try and match. The Check Address is the first byte
where a match is attempted. Check is located initially at Start
Address+ N bytes. N is the value you've specified for the byte
length match. Any address closer to Start would not allow the
requisite length in the first group. If a match is found at Check,
N - l more bytes are checked. If they match, we print the
addresses. Whether or not they match, Check is incremented by
1 and we start again. After the entire program has been checked
against Start, Start is incremented by 1 and the whole thing
happens again! You'll notice the output speed up as we move
through the program, because the farther Start moves towards
the end, the shorter the length of bytes its must check becomes.

Two addresses at the end are used to determine when one pass
or the whole process is complete. End Check is your program's
ending address minus (N-2). This is the address from which an
inadequate number of bytes remain to become a N length
subroutine. Each time Check is incremented it is compared with
this address. If they match, its time to raise the Start Address by
one, re-formulate Check and begin again. Match Check is N
bytes back into the program from End Check. Each time Start is
incremented it is compared with Match. If they are the same,
there are an insufficient number of bytes remaining in the
program to get two matching groups. At this point we're done.

November 1987: Volume 8, Issue 0 3

The Caveats:

Common Code wi l l provide you with all the information you
need to identify existing subroutine material within your pro
gram, but:

1. If you've written different code in two places in your program
that performs the same function, Common Code won't find it
(Obvious, yes, but I thought I'd mention it.).

2. Because the program leaves no stone unturned in searching
for matching groups, more stones than you need are the
result. Not all matches wi l l occur on valid boundaries. A
match may begin with an operand rather than an opcode. If
you are searching for a small byte string length and the
program contains common sections of greater length, output
wi l l show up as multiple groups, each separated by one byte.

3. Some groups wi l l contain branches or jumps outside of them
selves and wi l l therefore be unusable.

4. Finally, some usable groupings may, to the reader of your
source, make the program intent less clear. Common Code
wil l provide you with opportunities. You must decide where
clarity takes precedence over brevity.

How did Common Code perform on my long program? I was
able to achieve a 10% reduction in program length (around 350
bytes). Don't take this as a typical result in applying this utility.
Your results depend entirely on what's in your program. Good
hunting!

Common Code: Creates ML module on disk

IA
KJ
CG
IJ
El

MO
BC
GK
GF
LG
BO
KD

FB
CI

DO
CP
BL
CB
El

FO
KK
IN
IK

0 0
HC
DA

1000 rem save"0 :common code.gen",8
1010 rem a locate & display utility to
1020 rem f ind ident ical code sequences
1030 rem in mach ine language programs
1 0 4 0 :

1050 rem this p rog ram will create
1060 rem a load a n d run modu le on
1070 rem disk ca l led ' c o m m o n code '
1080 rem
1090 for j = 1 to 910 : read x
1100 ch = c h + x : next
1110 if c h < > 9 8 1 5 6 then p r i n f checksum error"

: end
1120 print "data ok, now creat ing file": print
1130 restore
1140 open8 ,8 ,8 , "0 :common code,p,w"
1150 pr int#8,chr$(1)chr$(8);
1160 for j = 1 to 9 1 0 : read x
1170 pr int#8,chr$(x); : next
1180 c lose 8

1190 print "prg file ' c o m m o n code ' created. . .
1200 print "this generator no longer needed .
1210 rem
1220 data 1 1 , 8, 10, 0 , 1 5 8 , 50, 48 , 54
1230 data 49, 0, 0, 0 , 1 6 9 , 1 4 7 , 3 2 , 2 1 0
1240 data 255 , 162, 0, 142, 138, 1 1 , 1 4 2 , 140
1250 data 1 1 , 1 8 9 , 35 , 1 0 , 2 4 0 , 6, 3 2 , 2 1 0

HP
IB
BF
FB
JA
Dl

OB
KB
KJ
M G
G D
ML
GN
Gl
EL
CP
HJ
H C
OP
KC
DL
M M
PO
PM
FN
EP
C D
CB
CE
NP
G D
GN
FK
A B
FG
O M
NL
PE
PP
M L
D N
EC
IE

PH
DK
HI

G D
DF
G M
LP
DD
JC
HL
CB
GE
BP
M M
CF
M G

1260 data 255,
1270 data 1 1 ,
1280 data 202,
1290 data 32 ,
1300 data 210,
1310 data 76,
1320 data 208,
1330 data 130,
1340 data 10,
1350 data 32 ,
1360 data 109,
1370 data 222 ,
1380 data 173,
1390 data 133,
1400 data 13,
1410 data 0,
1420 data 255 ,
1430 data 1 1 ,
1440 data 130,
1450 data 1 4 1 ,
1460 data 162,
1470 data 210,
1480 data 240,
1490 data 208,
1500 data 0,
1510 data 255,
1520 data 2 1 ,
1530 data 13,
1540 data 10,
1550 data 1 4 1 ,
1560 data 32 ,
1570 data 10,
1580 data 203,
1590 data 255,
1600 data 255,
1610 data 1 4 1 ,
1620 data 1 1 ,
1630 data 1 1 ,
1640 data 144,
1650 data 165,
1660 data 165,
1670 data 9,
1680 data 137,
1690 data 0,
1700 data 165,
1710 data 105,
1720 data 1 1 ,
1730 data 208,
1740 data 2 5 1 ,
1750 data 0,
1760 data 11 ,
1770 data 208,
1780 data 162,
1790 data 240,
1800 data 243,
1810 data 37,
1820 data 255,
1830 data 255,
1840 data 253

232 , 208 ,
3 2 , 165,

2 2 4 , 255 ,
1 9 1 , 10,
255 , 3 2 ,

10, 240 ,
245 , 162,

1 1 , 3 2 ,
157, 130,
179, 10,
130, 1 1 ,

24 , 109,
138, 1 1 ,
252 , 173,

3 2 , 210 ,
189, 89 ,
2 3 2 , 208 ,

3 2 , 165,
1 1 , 1 4 1 ,

136, 1 1 ,
0, 189,

255 , 232 ,
2 5 1 , 2 0 1 ,
243 , 240,
189, 143,
232 , 208 ,

1 1 , 32 ,
240 , 46 ,

3 2 , 179,
1 4 1 , 1 1 ,
2 1 0 , 255 ,

24 , 109,
1 4 1 , 139,

3 2 , 26 ,
173, 139,

1 1 , 173,
1 4 1 , 136,

56 , 237 ,
29 , 173,

2 5 1 , 24,
2 5 2 , 105,
206 , 137,

1 1 , 233 ,
177, 2 5 1 ,
253 , 105,

0, 133,
208 , 228 ,
2 2 1 , 2 4
165, 252
142, 140
208 , 10

3, 76
0, 160

10, 2 0 0
76 , 128
3 2 , 237
3 2 , 210

160, 0
0, 153

245, 162,
10, 224,

240, 29 ,
144, 243,

26, 1 1 ,
197, 32,

0, 32,
179, 10,

1 1 , 232,
224, 3,
1 4 1 , 130,
132, 1 1 ,
208, 42 ,
132, 1 1 ,
255, 1 4 1 ,

10, 240,
245, 162,

10, 76,
137, 1 1 ,
169, 13,
110, 10,
208, 245,

80 , 240,
3, 32,

10, 240,
245, 76,
228, 255,

32 , 210,

10, 10,
32 , 228 ,
32 , 1 9 1 ,

1 4 1 , 1 1 ,
1 1 , 169,
1 1 , 169,
1 1 , 56 ,

136, 11 ,
, 1 1 , 1 4 4 ,
, 1 3 9 , 1 1 ,
, 1 3 7 , 1 1 ,
, 109, 139,
, 0, 133,
, 1 1 , 76,
, 1 , 76,
, 209, 253,
, 1 ,133,
, 254, 165,
, 165, 254,
, 1 6 5 , 2 5 1 ,
, 1 0 5 , 0,
, 11 ,165 ,
, 165 ,252 ,
, 1 1 8 , 11
, 0 , 2 3 2
, 1 7 7 , 2 5 1
, 9 , 1 7 3
, 1 0 , 1 6 9
, 255, 169
, 192, 2
, 1 4 1 , 11

0, 32 , 21
5 , 1 7 6 , 13

189 ,130 , 11
169, 13, 32
162, 0 , 1 8 9
210, 255, 232

26 , 1 1 , 1 8 9

10, 10, 10
189 ,130 , 11
240, 10, 24

1 1 , 232, 208
141 ,132 , 11
173 ,130 , 11
1 3 3 , 2 5 1 , 169
138, 1 1 , 1 6 2

6, 3 2 , 2 1 0
0, 32 , 21

45, 8 , 1 7 3
173 ,132 , 11

3 2 , 2 1 0 , 255
240, 6, 32

32, 228, 255
6 , 2 0 1 , 83

214, 1 0 , 1 6 2
9, 3 2 , 2 1 0

62, 8, 32
240, 2 5 1 , 2 0 1
255, 3 2 , 1 9 1

10, 10, 10
255, 240, 251

10, 3 2 , 1 7 9
2, 144

3 2 , 2 1 0
3 2 , 2 1 0

2, 141
5 6 , 2 3 7 , 1 4 1

, 35 , 173, 136
141 ,134 , 11

, 1 4 1 , 1 3 5 , 11
, 1 1 , 1 3 3 , 2 5 3
,254 , 7 6 , 1 2 0
, 7 1 , 9 , 1 7 3
, 86, 9 , 1 6 0
, 2 4 0 , 65, 24
, 2 5 3 , 1 6 5 , 2 5 4
, 2 5 3 , 2 0 5 , 136
, 2 0 5 , 1 3 7 , 11
, 1 0 5 , 1 ,133
, 133, 252, 162
, 2 5 1 , 2 0 5 , 134
, 2 0 5 , 1 3 5 , 11
, 76, 89 , 9
, 2 3 6 , 1 3 9 , 11
, 209, 253, 240
, 1 4 0 , 1 1 , 2 4 0
, 32 , 3 2 , 2 1 0
, 36 , 3 2 , 2 1 0
, 2 4 0 , 9 , 1 8 5
, 200, 208, 243

2 0 1 ,
13,
13,

233,

The Transactor 42 November 1987: Volume 8, Issue 0 3

BO 1850 data 3 2 , 94 , 11 , 76, 128, 9, 169, 13

10 1860 data 32 , 210, 255, 169, 36 , 3 2 , 210 , 255

CG 1870 data 160, 0, 192, 2, 240, 9, 185, 251

BC 1880 data 0, 153, 1 4 1 , 1 1 , 200, 208 , 243 , 32

PJ 1890 da ta 94 , 1 1 , 169, 1, 1 4 1 , 140, 1 1 , 76

MK 1900 data 218 , 9, 32, 32, 32 , 18, 67 , 79

AB 1910 da ta 77, 77, 79, 78, 32 , 67 , 79 , 68

GG 1920 data 69, 146, 13, 13, 83 , 84 , 65 , 82

PA 1930 data 84, 32 , 65, 68, 68, 82 , 69 , 83

IP 1940 data 83, 3 2 , 73, 78, 32, 72, 69 , 88

IM 1950 da ta 32 , 13, 0, 73, 78, 80 , 85 , 84

C N 1960 da ta 32 , 69 , 82, 82, 79, 82 , 13, 0

CF 1970 data 69, 78, 68, 32, 65 , 68 , 68 , 82

BD 1980 data 69, 83 , 83, 32 , 73, 78 , 3 2 , 72

CA 1990 data 69, 88 , 32, 13, 0, 79 , 85 , 84

HC 2000 data 80 , 85 , 84, 32, 84, 79, 32 , 18

LN 2010 data 83, 146, 67, 82, 69, 69 , 78, 32

NK 2020 da ta 79, 82 , 32, 18, 80, 146, 8 2 , 73

IF 2030 da ta 78, 84 , 69, 82, 13, 0, 66 , 89

HJ 2040 data 84 , 69 , 32, 76, 69 , 78, 7 1 , 84

PF 2050 data 72, 3 2 , 73, 78, 32 , 72, 69 , 88

CB 2060 data 13, 55 , 157, 0, 32 , 207 , 255 , 201

AB 2070 data 13, 240, 6, 157, 130, 1 1 , 232 , 208

FF 2080 data 243 , 96 , 2 0 1 , 58, 176, 4, 56 , 233

LJ 2090 da ta 48, 96 , 56, 233, 55, 96 , 2 0 1 , 71

EE 2100 da ta 176, 1 4 , 2 0 1 , 65, 176, 8, 2 0 1 , 58

NL 2110 da ta 176, 6, 2 0 1 , 48, 144, 2, 24 , 96

LH 2120 da ta 104, 104, 76, 62, 8, 169, 7, 162

OA 2130 da ta 4, 160, 255, 32, 1 8 6 , 2 5 5 , 169, 0

GK 2140 da ta 32 , 189, 255, 32 , 192, 255, 162, 7

HK 2150 data 32 , 2 0 1 , 255, 96 , 169, 0, 1 4 1 , 138

FN 2160 data 1 1 , 165, 203, 2 0 1 , 64 , 240, 23 , 201

CK 2170 da ta 60 , 208, 19, 173, 138, 1 1 , 208 , 19

FE 2180 data 165, 203, 2 0 1 , 64, 208, 250 , 169, 1

DP 2190 da ta 1 4 1 , 138, 1 1 , 76, 242, 10, 173, 138

HM 2200 data 1 1 , 208 , 222, 96, 169, 0, 133, 204

AB 2210 da ta 96, 169, 1, 133, 204 , 96 , 162, 1

AJ 2220 data 160, 0, 189, 1 4 1 , 1 1 , 4 1 , 240 , 74

LP 2230 data 74 , 74, 74, 2 0 1 , 10, 176, 26 , 24

BM 2240 data 105, 48 , 153, 130, 1 1 , 200 , 192, 3

NK 2250 data 240 , 2 1 , 176, 32 , 224 , 0, 240 , 21

NM 2260 data 189, 1 4 1 , 11 , 4 1 , 15, 202 , 76, 44

EA 2270 da ta 1 1 . 24, 105, 55, 76, 5 1 , 1 1 , 189

AA 2280 da ta 1 4 1 , 1 1 , 76, 68, 1 1 , 160, 2, 162

G M 2290 data 0, 76, 35 , 1 1 , 96 , 32 , 3 1 , 11

BB 2300 data 162, 0, 224, 4, 240, 9, 189, 130

NO 2310 data 1 1 , 32 , 210, 255, 232 , 208 , 243 , 169

MA 2320 data 13, 3 2 , 2 1 0 , 255 , 96 , 32 , 204 , 255

PE 2330 data 169, 7, 141 , 139, 1 1 , 3 2 , 195, 255

JK 2340 da ta 96, 0, 0. 0, 0, 0, 0, 0

JE 2350 data 0, 0, 7 0, 0, 0

Common Code: PAL source code

DA
NB
NM
JC
PJ
MH

1000 rem save'Oxommon code.pal',8
1010 open 8,8,8,"Oxommon code.p.w
1020 sys700
1030 opt 08
1040 ; • common code by jack r. farrah
1050 program to find identical code sequences

MN 1060 ;in machine language programs for use
CN 1070 ;as possible subroutines.
CP 1080 ;tested program to be in memory.
CG 1090 ;all user inputs in hex.
PF 1100 ;screen or printer output.
DP 1110 ;space bar pauses listing.
IF 1120 ; • constants •
Nl 1130 chrin = Sffcf ; get mult, char.input
NC 1140 chrout = $ffd2 ; print to device
KO 1150 getin = $ffe4 ; get single char.
EE 1160stadd = $fb ; start address
CI 1170 ckadd = $fd ; check address
GG 1180 setlfs = $ffba ; set log. file
PL 1190 setnam = Sffbd ; name file
ED 1200 open = SffcO ; open file
OE 1210 close = $ffc3 ; close file
EF 1220chkout = $ffc9 ; set output file
CG 1230 clrchn = $ffcc ; restore defaults
CA 1240 .=$0801 2049
LK 1250 word twobrk ; forward pointer
HB 1260 byte 10,0 ; line number
DD 1270 .byte $9e ; 'sys' keyword token
DH 1280 asc '2061- sys address
AL 1290 brk
PL 1300 twobrk word 0
JA 1310 Ida #147 ;clear screen
PP 1320 jsr chrout
IK 1330 begin Idx #0
PJ 1340 stx inflg ;clear flags
JN 1350 stx mtchflg
FO 1360 ;*get user start address*
HF 1370 titl Ida title.x ;print prog, name
Nl 1380 beq start ;and start add.
EM 1390 jsr chrout input message
EF 1400 inx
GB 1410 bne titl
MD 1420 start Idx #0 set index
JK 1430 jsr cron blink cursor
CE 1440 jsr get get address
EA 1450 check cpx #5 ">4 characters?
IN 1460 bcs error only want 4
NL 1470 ck1 dex reset for cr counted
EN 1480 cpx #255 only after 4
KL 1490 beq convert make binary
CD 1500 Ida hxadd.x get hex ascii
OA 1510 jsr eval check if valid
GC 1520 bcc ck1 ok.get next char.
Ol 1530 ;«error message loop*
GK 1540 error Ida #$0d cr
FO 1550 jsr chrout
IL 1560 jsr crof turn off cursor

JG 1570 Idx #0
FE 1580 er1 Ida ermess.x print error message
CJ 1590 beq begin start over
HB 1600 jsr chrout
GC 1610 inx
CF 1620 bne er1
Jl 1630 ;^change ascii hex to binary & store
IE 1640 convert Idx #0 set index

NN 1650 jsr crof unblink cursor
MH 1660 loop Ida hxadd.x get ascii
GK 1670 jsr makbi make binary
EG 1680 asl shift value into
LJ 1690 asl high nybble position
PE 1700 asl
JF 1710asl
LN 1720 sta hxadd.x save it
KC 1730 inx raise index
DP 1740 Ida hxadd.x get next ascii
GP 1750 jsr makbi make binary
ND 1760 cpx #3 '4th character?
HA 1770 beq over yes. finish here
OC 1780 clc no
LB 1790 adc hxadd add to high nybble
FG 1800 sta hxadd save combined value
KH 1810 inx raise index
IL 1820 bne loop .always branch

KO 1830 over clc ,add low nybble of
FJ 1840 adc hxadd+ 2 ,low byte to high
HM 1850 sta hxadd + 2 ,and save it
ND 1860 end Ida inflg ;"done end address?
Al 1870 bne output ; yes. flag set
FE 1880 Ida hxadd ;no.save start add.

The Transactor 43 November 1987: Volume 8, Issue 0 3

MF 1890 sta stadd +1 ;on zero page CF 2720 bcc subhi ;reduce hi byte
NM 1900 Ida hxadd + 2 Ol 2730 setl Ida enck ;get new end add.
OC 1910 sta stadd FD 2740 sec
KK 1920 Ida #$0d ;cr LA 2750 sbc ckbyt ; subtract byte Igth
BG 1930 jsr chrout FJ 2760 sta mtchck ; save as check value
KP 1940 sta inflg ;setflag LK 2770 bcc sub2 ; reduce hi byte
JF 1950 ;.get user end address* DC 2780 Ida enck +1 ; get hi byte new end
KK 1960 Idx #0 ;clear index DN 2790 set2 sta mtchck + 1 ; make same here
JA 1970endl Ida endmess.x ;print message BJ 2800 set3 Ida stadd ; start add. low byte
FN 1980 beq next AH 2810 clc
NJ 1990 jsr chrout LG 2820 adc ckbyt ; add byte Igth
MK 2000 inx PL 2830 sta ckadd ; check pointer
OD 2010 bne endl HE 2840 Ida stadd +1 hi byte
PI 2020 next Idx #0 ; clear for char, count OE 2850 adc #0 ; add carry
BA 2030 jsr cron ; blink cursor HE 2860 sta ckadd +1 put in pointer
CB 2040 jsr get ; get the address Nl 2870 jmp main start main loop
DO 2050 jmp check check &make binary MJ 2880 subhi dec enck +1
DB 2060 output Ida hxadd get binary end add. CK 2890 jmp setl
MG 2070 sta enck +1 and store in zero page NH 2900 sub2 Ida enck +1
Bl 2080 Ida hxadd+ 2 LF 2910 sbc #1

GK 2090 sta enck EM 2920 jmp set2
OF 2100 Ida #$0d ;cr MJ 2930 ;.main progam loop.
FB 2110 jsr chrout HN 2940 main Idy #0 clear for ind.add.mode
HD 2120 ;.get output destination from user. FM 2950 Ida (stadd),y get value at start
JJ 2130 Idx #0 FK 2960 cmp (ckadd).y next to check
FC 2140 OUtl Ida outmess.x print message DF 2970 beq gotmtch they match.check more.
MC 2150 beq getit ON 2980 ma1 clc no match
HE 2160 jsr chrout BA 2990 Ida ckadd add 1 to check add.
GF 2170 inx HJ 3000 adc #1
PL 2180 bne out1 GN 3010 sta ckadd store back
NL 2190 getit jsr getin get s' or 'p' OH 3020 Ida ckadd +1 fix high byte
MC 2200 beq getit wait for key DL 3030 adc #0
NN 2210 cmp #80 •p? OO 3040 sta ckadd +1 store
KE 2220 beq print yes. open printer GN 3050 Ida ckadd have we reached
PK 2230 cmp #83 •no. s? PA 3060 cmp enck 'end of possible bytes?
CA 2240 bne getit no.go back for key IE 3070 bne main no. start next series
BO 2250 beq byte screen output BP 3080 Ida ckadd +1 lo bytes matched
PF 2260 print jsr prout open printer file HK 3090 cmp enck +1 "hi bytes same?
AH 2270 ;»get byte Igth. from user. LK 3100 bne main no.continue
DF 2280 byte Idx #0 IB 3110 clc done with this series
LI 2290 bytlup Ida bytmess.x print message NF 3120 Ida stadd move start pointer

AA 2300 beq gtbyt CI 3130 adc #1 to next highest byte
NN 2310 jsr chrout CA 3140 sta stadd store it
MO 2320 inx IA 3150 Ida stadd +1 fix hi byte
BL 2330 bne bytlup FD 3160 adc #0
ON 2340 erjmp jmp error out of range avoider BA 3170 sta stadd +1
NM 2350 gtbyt jsr cron blink cursor FP 3180 Idx #0 clear flag to show print
0 0 2360 gt2 jsr getin get key JD 3190 stx mtchflg routine this is new add.
MC 2370 beq gt2 wait for key FM 3200 Ida stadd compare start add.
DN 2380 cmp #$0d •cr? LG 3210 cmp mtchck with last checkable byte
BA 2390 beq setend default selected EE 3220 bne return no match low byte
Nl 2400 jsr chrout new value, print it HC 3230 Ida stadd +1 check hi byte
BL 2410 jsr eval check range OM 3240 cmp mtchck +1
EJ 2420 jsr makbi make binary NH 3250 bne return no match
KE 2430 asl shift to hi nybble HI 3260 jmp exit all done, close up
DD 2440 asl HI 3270 return jmp set3 out of range avoider
ND 2450 asl JC 3280 ;»check remaining bytes for match*
HE 2460 asl GF 3290gotmtch Idx #0 clear indices
OM 2470 sta hldr save it PC 3300 Idy #0
AM 2480 gt1 jsr getin get second char. FE 3310 lup inx x counts bytes matched
OH 2490 beq gt1 wait for it OF 3320 cpx ckbyt "checked all?
HI 2500 jsr chrout print iit FA 3330 beq prnt yes.print 'em
FB 2510 jsr eval check range LC 3340 iny no. index to next byte
IP 2520 jsr makbi make binary CG 3350 Ida (stadd),y get next from start
AF 2530 clc add to hi nybble HO 3360 cmp (ckadd).y check for equality
KD 2540 adc hldr BB 3370 beq lup matches.get another
AM 2550 cmp #2 •>1? PA 3380 jmp ma1 no match.move up a byte
FB 2560 bcc erjmp <2 not allowed EB 3390 ;«here if all bytes match.
LL 2570 sta ckbyt store new value LJ 3400 prnt Ida mtchflg •printed this stadd?
OD 2580 Ida #$0d cr OM 3410 beq prst no, so print it
FP 2590 jsr chrout IA 3420 prntl jsr wait check for space bar
AH 2600 ;.calculate end addresses* IH 3430 Ida #32 indent 2 spaces
CO 2610setend jsr crof .unblink cursor HE 3440 jsr chrout
GG 2620 Ida #$0d cr BF 3450 jsr chrout
NB 2630 jsr chrout HC 3460 Ida #36 $
GA 2640 Ida ckbyt ;get Igth. to check FG 3470 jsr chrout
LN 2650 sec MK 3480 Idy #0 ;set upto get 2 bytes
IA 2660 sbc #2 ; subtract 2 GK 3490 mr2 cpy #2
KC 2670 sta hldr temporary save HM 3500 beq mr1
CO 2680 Ida enck ;low byte end add. ON 3510 Ida ckadd,y ;get add. of matching bytes
DA 2690 sec CO 3520 sta hldr.y ;store for conversion
IJ 2700 sbc hldr ;subtract value NF 3530 iny ;get 2nd byte

OE 2710 sta enck ;save new value OH 3540 bne mr2 ;always branch

The Transactor 4 4 November 1987: Volume 8, Issue 0 3

HL 3550 mr1 jsr prnthx ;convert and print add. LF 4380 cmp #64 ;for space bar release
PF 3560 jmp ma1 ; reset ckadd and loop again OA 4390 bne wa1 keep waiting
OM 3570 ;*print start address matched' LP 4400 Ida #1 set flag to show
MF 3580 prst Ida #$0d ,cr GF 4410 sta inflg we're looking for 2nd
NN 3590 jsr chrout FD 4420 jmp wa2 hit of space bar
DL 3600 Ida #36 $ KE 4430 goon Ida inflg if flag set
BP 3610 jsr chrout GN 4440 bne wa2 keep looking
FM 3620 Idy #0 ;set to get 2 bytes MK 4450 g1 rts the waits over
ID 3630 pr2 cpy #2 BK 4460 ; *start cursor blink*
GF 3640 beq pr1 AL 4470 cron Ida #0 clear this byte
LF 3650 Ida stadd.y ;get 1st byte Fl 4480 sta $cc to start blink
OG 3660 sta hldr.y ;save for conversion GH 4490 rts
DM 3670 iny .set for next byte BK 4500 ;*stop cursor blink*
MG 3680 bne pr2 HG 4510 crof Ida #1 set byte to
GN 3690 pr1 jsr prnthx convert and print NK 4520 sta $cc stop blink
PD 3700 Ida #1 set flag to show OJ 4530 rts

stop blink

PF 3710 sta mtchflg stadd was printed EN 4540 ;*2 byte binary to 4 byte ascii hex*
NM 3720 jmp prntl go print ckadd DG 4550 makhx Idx #1 x set to get byte
NP 3730 ;.text» IL 4560 Idy #0 y set to save ascii
OL 3740 title .byte $20.$20.$20,$12 AA 4570 hx3 Ida hldr.x get byte(hi first)
JB 3750 .asc "common code": .byte $92,$0d,$0d HM 4580 and #$f0 mask low nybble
KK 3760 .asc "start address in hex ': byte $0d,$00 KH 4590 Isr shift hi nybble to low
AE 3770 ermess .asc "input error": byte $0d,$00 BN 4600 Isr

shift hi nybble to low

GN 3780 endmess .asc "end address in hex ": .byte $0d,$00 LN 4610 Isr
FO 3790 outmess .asc "output to ": .byte $12 FO 4620 Isr
LD 3800 .asc "s": byte $92 AO 4630 hx1 cmp #10 " = >10?
ME 3810 .asc "creen or": .byte $12 NJ 4640 bcs admor yes, make letter
ME 3820 .asc "p" byte $92 MO 4650 clc no.number
PH 3830 .asc "rimer": .byte$0d,$00 LA 4660 adc #48 add 48 for ascii
GG 3840 bytmess .asc "byte length in hex": byte $0d,$37,$9d,$00 MJ 4670 hx2 sta hxadd,y store it
KN 3 8 5 0 ; ' S u b r o u t i n e s * DC 4680 iny raise c o u n t e r
JC 3860 get jsr c h r i n get user input EO 4690 cpy #3 " d o n e 3 nybbles?
FK 3870 cmp #$0d "cr? EF 4700 beq skip yes.do 4th
HI 3880 beq done yes.exit routine BA 4710 bcs dun y>3.we're done
PI 3890 sta hxadd.x store ascii char. DK 4720 cpx #0 "yO.hibyte done?

GC 3900 inx raise idex for next ON 4730 beq nxtbyt yes.do low
FL 3910 bne get go get it AN 4740 Ida hldr.x no.get lo nyb.hi byte
CJ 3920 done rts HE 4750 hx4 and #$0f mask hi nybble
NF 3930 ;*make 1 byte ascii in a binary* MK 4760 dex lower counter
IL 3940 makbi cmp #58 " = >9? LM 4770 jmp hx1 make ascii

AK 3950 bcs let yes, its a letter IM 4780 admor clc convert binary letter
AD 3960 sec no so subtract 48 LE 4790 adc #55 to ascii by
ND 3970 sbc #48 for equiv. number NP 4800 jmp hx2 adding 55
PM 3980 rts return OP 4810 skip Ida hldr.x get lo byte last time
DC 3990 let sec for a to f FL 4820 jmp hx4 do lo nybble
PM 4000 sbc #55 subtract 55 CJ 4830 nxtbyt Idy #2 reset indices fo
GJ 4010 rts LM 4840 Idx #0 2nd address byte
CN 4020 ;«check if valid hex ascii* FE 4850 jmp hx3 loop again
PF 4030 eval cmp #71 • = >g? IC 4860 dun rts return
GD 4040 bcs bad yes. no good NO 4870 ;«print hex add.stored in hxadd*
PF 4050 cmp #65 "its < g.is it =>a? KG 4880 prnthx jsr makhx binary to hex
BP 4060 bcs good yes, its valid MB 4890 Idx #0 clear index
AG 4070 cmp #58 "its<a.is it =>:? CJ 4900 lupe cpx #4 do 4 numbers
GG 4080 bcs bad yes.no good HI 4910 beq fin
JD 4090 cmp #48 •<:.is it <0? BA 4920 Ida hxadd.x get ascii hex
KD 4100 bcc bad yes. no good PB 4930 jsr chrout print it
HI 4110 good clc ; range ok. EM 4940 inx ;point to next char.
NO 4120 rts ;back to caller FN 4950 bne lupe ;always branch
KN 4130 bad pla invalid.pull return FE 4960 fin Ida #$0d ;cr
FA 4140 pla ;add. from stack BE 4970 jsr chrout
PK 4150 jmp error ;user restart HL 4980 rts ;return
DM 4160 ;*set up printer file* GD 4990 ;*program finished, clean up*
IB 4170 prout Ida #7 file # CA 5000 exit jsr clrchn reset default devices
Bl 4180 Idx #4 device MH 5010 Ida #7 ; default value & file#
Bl 4190 Idy #$ff bogus second, add. DE 5020 sta ckbyt ; save it
NN 4200 jsr setlfs ; define the file FB 5030 jsr close ; close file 7
II 4210 Ida #00 no name, no length FD 5040 rts ; back to basic

BL 4220 jsr setnam required call EE 5050; *storage*
BP 4230 jsr open ; open file 7 AD 5060 hxadd byte 0,0,0,0 ;4 bytes to hold ascii hex
GH 4240 Idx #7 ; set file 7 for output CD 5070 mtchck byte 0,0 ;last add. to check
MF 4250 jsr chkout MM 5080 enck byte 0,0 ; ast add. for match
JH 4260 rts ;back to caller NB 5090 inflg .byte 0 ;user add. input flag
JH 4270 ;'Check/accept space bar pause* FG 5100 ckbyt byte $07 ;# bytes to match
MO 4280 wait Ida #0 ;clear flag to show Ol 5110 mtchflg .byteO ; new group flag
Jl 4290 sta inflg ;we're not waiting LH 5120 hldr . byte 0,0 ;temporary storage
JH 4300 wa2 Ida $cb ;current key pressed GO 5130 end
OJ 4310 cmp #64 ;64 = no key
EA 4320 beq goon ; no key, nothing to do
FM 4330 cmp #60 ; "space bar?
0 0 4340 bne goon ;no, so ignore
FE 4350 Ida inflg ;was space bar.
IM 4360 bne g1 ;if set,wait is over
JE 4370 wa1 Ida $cb ;start the wait

The Transactor 4 5 November 1987: Volume 8, Issue 0 3

http://yes.no

Getting Around Chris Miller
With Gogo Dancer Kitchener, Ontario

One of the nicest things Commodore did for the 64 was build in a
fairly gutless Basic wi th lots of RAM vectors for hackers to play
wi th. I'm aware that the world probably does not really need
another CHRGET wedge but when this idea came to me, I
couldn't seem get it out of my mind. As a matter of fact, I almost
named the program GOGO CRAZY, and now I would like to
share it with you.

My favourite language wi l l probably always be assembler be
cause of the power it gives you over the flow of a program.
GOGO DANCER WEDGE wi l l allow Basic programmers to
prance about their code with much the same agility.

GOTO and GOSUB now support three new types of parameters:

Expressions Of Your Desire

1. Yes, now instead of typing GOTO 1000 you could type GOTO
10*10*10 or GOTO 500 + 500. Or how about instead of ON X
GOSUB 100,200,300 using GOSUB X*100. That's right, you can
use any type of expression including variables. And you thought
your programs were hard to understand now.

What's In A Name

2. Labels! Even better, you' l l be able call your routines by name
if you want to. This means you can do a dumb renumber or
move stuff around without messing things up for your GOTOs
and GOSUBs.

Macros (Kind Of)

3. Lastly, you can use string variables instead of literal label
arguments. Imagine reading in your subroutine calls from DATA
statements. Want to change the order in which things are done?
Just change the DATA.

A Word Of Warning

These abilities can cut two ways. You can use GOGO DANCER
to make your programs more maintainable and easily under
stood, or you can use it to confuse the living daylights out of
anyone who lays eyes on them (including yourself).

Here are a few trivial examples to demonstrate the syntax:

5 rem using express ions
10 for In = 100 to 500 step 100
20 gosub In
30 next
40 end

100 print "this -;: return
200 print "could";: return
300 print "make";: return
400 print "you";: return
500 print "crazy";: return

5 rem using labels
10 gosub © h e l l o
20 gosub © g o o d b y e
30 end
40 ©he l l o
50 print 'hi there"
60 return

70 © g o o d b y e : print "so long": return

Notice the "@" must precede the name both in the call and the
definition and that the name is defined as a single statement.
Keep in mind that redefinition errors are not checked for. The
first occurrence of a label wi l l always be used.

5 rem using str ing var iables
1 0 f o r x = 1 to 3
20 read g$
30 gosub 'g$
40 next
50 end
60 @xxxx: print "may not be found ";: return
70 @yyyy: print " tokenized labels ";: return
80 @7777. print "using this technique ";: return
90 data zzzz.yyyy.xxxx

As it is, the above program would print (quite truthfully),

"using this techn ique token ized labels may not be found".

If you were to change the data line to 90 yyyy.xxxx.zzzz then
the program would print

"tokenized labels may not b e found us ing this technique"

Notice that the '@' is used before the string variable name also.

The Transactor 4 6 November 1987: Volume 8, Issue 0 3

Variables used in GOTO and GOSUB parameters must always be
defined. NULL or ZERO values wil l not be substituted (as Basic
so loves to do). Instead you wi l l get an UNDEFINED STATE
MENT error.

GOGO DANCER is only about 200 bytes of code and shouldn't
be much trouble to enter as data statements. If you enter and
convert the source to whatever assembler you love best, then
you wi l l be able to relocate it easily and modify it if you so desire.
To activate it use:

SYS 49152

either from the immediate or within a program. A SYS49152
with the wedge enabled wont hurt anything.

GOGO DANCER was written mostly for fun and education (my
own). Nonetheless, the self-modifying powers and reduction of
Basic's line number dependence may prove useful in protection
schemes, complex Basic intelligence simulations and in reduc
ing the size of source programs.

Gogo Dancer 64: BASIC Loader

Gogo Dancer 64: Source Code (Buddy 64 Format)

DP
EP
MO
BD

EO

HF
EB
A O
GO
BF
LM
ED
HE
EE
JB
PB
BA
J D
IG
EF
HE
CI
KH
A l
IK

MK
HA
PF
HI
OJ
MJ
GA
CD

100
110
120
130

140

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

rem save"0:gogowedge. ldr" ,8
rem * * wri t ten by chris miller, ki tchener, Ontario

for j = 49152 to 49357: read x: poke j ,x
: c h = c h + x: next
if c h < > 2 6 6 9 4 then print ' * * c h e c k s u m
error * * ' : stop
print "sys49152: rem to enable": e n d

data 169, 1 1 ,
data 9, 3,
data 192, 76,
data 2 0 1 , 1 4 1 ,
data 7 6 , 2 4 8 ,
data 167, 169,
data 72, 165,
data 57, 72,
data 76, 174,
data 240, 12,
da ta 3 2 , 2 4 7 ,
da ta 1 6 9 , 1 3 6 ,
da ta 32 , 115,
da ta 177, 7 1 ,
da ta 7 1 , 170,
da ta 1 ,136 ,
data 140, 192,
data 165, 123,
data 165, 44 ,
data 177, 95,
data 136, 177,
data 9 5 , 2 0 8 ,
data 9 5 , 2 4 0 ,
data 0 , 1 7 7 ,
da ta 96 , 134,
da ta 227 , 168,

1 4 1 ,
96,

174,
240,
168,

3,
122,
169,
167,

32 ,
183,
177,

0,
240,
200,
202,
132,
133,
133,
2 0 1 ,
253,

12,
23,
95,
95,
56,

8, 3,
32 , 115,

167, 2 0 1 ,
13, 2 0 1 ,
32, 124,
3 2 , 2 5 1 ,
72, 165,

1 4 1 , 72,
32 , 115,

124, 0,
76, 163,

1 2 2 , 2 0 1 ,
32 , 139,
9 1 , 133,

177, 7 1 ,
134 ,253 ,
255, 165,
254, 165,

96, 160,
64 , 208 ,

200, 200,
202, 208,
2 0 1 , 58 ,
1 7 0 , 2 0 0 ,
177, 95 ,

76, 197,

169, 192, 141
0, 32 , 20

1 3 7 , 2 4 0 , 43
6 4 , 2 0 8 , 3

0, 7 6 , 2 3 7
163, 165, 123

58, 72, 165
3 2 , 6 7 , 1 9 2

0 , 2 0 1 , 64
3 2 , 158, 173

168, 32 , 6
3 6 , 2 0 8 , 34

176, 160, 0
255 , 200 , 177
168, 138, 208
1 3 2 , 2 5 4 , 76
122, 133, 253

43 , 133, 95
4 , 166, 255

25 , 136, 136
200, 200 , 209
240, 200 , 177
240, 1 9 , 1 6 0
177, 9 5 , 1 3 3
2 0 8 , 2 0 5 , 76
168

Dl
KJ
Bl

GB
EH
NO
AG
AF
AD
KA

AM
KF
GG
AO
EL
DJ
OP
AF
LB
MJ
GC
IE

KD
LB
AG
LC
AJ
CO
GH
KK
DP
ME
HH
IK
Kl

ND
IB

AN
OE
CE
OO
GD
NH
MA
DJ
AC
NJ
CP
NN
NN
CF
GM
BO
BJ
EM
Kl
FN
OE

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570

rem save"0:gogowedge.src',8
rem by chris miller jan. 4, 1987
rem enables calculated goto(sub) ln#
rem e.g. n = 10: goto n*n (i.e. goto 100)
rem enables goto(sub) labels
rem e.g. gosub @pig
rem enables goto(sub) variable name$
rem e.g. x$ = "pig": gosub @x$
rem e.g. 5000 @pig: (to flag routine)
rem ** source in buddy 64 (power
assembler) format

sys999

; sys700 for pal and symass

* = 4 9 1 5 2
.mem ; .opt oo for pal

srcptr = $5f
argptr = 253
length = 255

•* wedge for variable goto's & gosubs

Ida # < w d g
sta $308 ; install c m d wedge
Ida # > w d g
sta $309
rts

wdg

parse

jsr $73
jsr parse
jmp $a7ae

cmp #137
beq goto

c m p # 1 4 1
beq gosub

cmp #"@"
bne tobasic

jmp $a8f8

;** back to basic
tobasic = *

gosub

jsr $7c
jmp $a7ed

Ida #3
jsr $a3fb
Ida $7b
pha
Ida $7a
pha

;get command

;is it goto
;yes/then do goto

;is it gosub
;yes/then do gosub

;is it a label
;yes/then ignore

;read to eoln

;sets chr flags again
;continue parsing

;check stack space

;push stuff on stack

;text pointer

The Transactor 47 November 1987: Volume 8, Issue 0 3

BO 1580 Ida $3a IO 2190 sta argptr + 1
OG 1590 pha ;linenumber OA 2 2 0 0 ;
NN 1600 Ida $39 FC 2210 hunt = *
GM 1610 pha LE 2220 Ida 43 ;read start of basic
BK 1620 Ida #141 LP 2230 sta srcptr ;to source pointer
IC 1630 pha ;gosub token EM 2240 Ida 44

GM 1640 jsr goto KC 2250 sta srcptr + 1
BM 1650 jmp $a7ae KE 2 2 6 0 ;
CP 1660; EK 2270 back l = »
OF 1670 goto = * LD 2280 Idy #4
PO 1680 jsr $73 ;get next char DC 2290 Idx length
AC 1690 c m p re ;see if label goto NF 2300 Ida (srcptr), y ;first line char
KG 1700 b e q islabel ;yes/then check type BN 2310 cmp # • © ' ;see if label line
EC 1710; DD 2320 bne nextln ;no/try next line
JK 1720 ;** eval expr following goto(sub) AJ 2 3 3 0 ;
MH 1730 jsr $7c ; reset flags MO 2340 back2 = »
AJ 1740 jsr $ad9e ;evaluate expression JO 2350 dey
PP 1750 jsr $b7f7 ;convert float to fixed DP 2360 dey
GF 1760; NP 2370 dey
CK 1770 gotoline = * OJ 2380 Ida (argptr).y ;get search char
NA 1780 jmp $a8a3 ; perform goto MM 2 3 9 0 ;
EH 1790; MG 2400 for2 = *
AO 1800 ;** label used instead of linenum KE 2410 iny
LJ 1810 islabel = * EF 2420 iny
IH 1820 jsr $a906 ; indexend of st'mt OF 2430 iny
MF 1830 dey ;with .y. IG 2440 iny
BN 1840 Ida ($7a),y ;check last char NN 2450 cmp (srcptr), y ;compare with dest
CH 1850 cmp#"$" ;see if string var MH 2460 bne nextln ;not eq./next line
BF 1860 bne setlabel ;no/then literal MB 2 4 7 0 ;
EM 1870; HM 2480 dex ;else continue
AO 1880 ;** else label is in a string var FB 2490 bne back2 ;for lenght of arg
CG 1890 jsr $73 KD 2 5 0 0 ;
EN 1900 jsr $b08b ; locate var OK 2510 iny
BM 1910 Idy #0 JC 2520 Ida (srcptr),y ;should be end
JB 1920 Ida (71).y ;variable pointer AP 2530 beq found ;of source label
Nl 1930 beq undefnd'st ;var not defined CG 2 5 4 0 ;
KA 1940; AE 2550 cmp # • ; •

NF
II

1950
1960

sta
iny

length ;save length GP
Al

2560
2 5 7 0 ;

beq found

OG 1970 Ida (71),y ;set pointer to var OD 2580 nextln = *
EC 1980 tax ;in .x. and .y. JG 2590 Idy #0
GK 1990 iny A N 2600 Ida (srcptr),y
DO 2000 Ida (7 i) ,y NP 2610 tax
JK 2010 tay MB 2620 iny
OB 2020 txa ;then backup one OO 2630 Ida (srcptr),y
DF 2030 bne fo r i AL 2640 sta srcptr + 1
OG 2040 ; EF 2650 stx srcptr
NL 2050 dey MA 2660 Ida (srcptr),y
CI 2060 ; KN 2670 bne back l
PB 2070 for i = * OO 2 6 8 0 ;
HN 2080 dex BM 2690 undefnd'st = •

HO 2090 stx argptr ;set zpg pointer AE 2700 jmp $a8e3 ;undefined state error
0 0 2100 sty argptr + 1 MA 2 7 1 0 ;
DL 2110 jmp hunt ;find the line JA 2720 found = *
OL 2120 ; LC 2730 sec
EO 2130 ;** otherwise label is constant HO 2740 jmp $a8c5 ;set goto
NH 2140 setlabel = * ED 2 7 5 0 ;
HJ 2150 sty length ;of label argument EK 2760 .end
Gl 2160 Ida $7a ;copy txtptr
KK 2170 sta argptr ;to search arg pointer
EE 2180 Ida $7b

The Transactor 4 8 November 1987: Volume 8, Issue Q 3

Now You See It,
Now You Don't

Michael R. Mossman
Quispamsis, NB

The secret of "transparent" cartridges on the C64

Have you ever wondered why those marvellous cartridges can
do things to your computer, but never show up anywhere in
memory? The first t ime I saw Busscard II (an IEEE interface for
the C64 that adds basic 4.0 disk commands) at a friends house, it
made me curious. I asked to see the machine language code, but
we could not find it in memory. This curiosity stayed on the back
burner until I bought my Fast Load cartridge. Again, the pro
gram could not be found in memory. Overwhelmed, I proceeded
to dismantle the cartridge. Inside, I expected to find a maze of
modern electronics. Much to my disappointment, there sat two
lowly ICs. One was the expected EPROM and the other a 7407.1
traced some of the lines but it didn't make much sense. Disap
pointed, I closed it up and it remained in the back of my
computer for over a year.

A few months back, I bought a "Promenade" EPROM program
mer to burn a few of my own custom chips. Every now and then
I would cast an eye at that Fast Load cartridge, wishing that I
could make my cartridges invisible in memory. I revived my
attack on that despicable cartridge with renewed vigor. I re
moved the EPROM from the board and read the program out
with my Promenade. I looked at the code and figured that the
program ran at $8000 but I knew that the program could not be
seen at $8000. This time I sat down and traced out every line on
the board and drew a diagram as I went. Low and behold, the
secrets were revealed to me.

ROIL

SN7407

} t
U5"2

D«0-0fFf'

ToC5«nd5E
ol ROM chip

1761

T .47 jiF 50V

1) Pin 7 is Ground
2) Pin 14 goes to + 5V supply
3) Al l address and data lines on the ROM or EPROM go to their

equivalents on the expansion port.

Figure 1

I would like to point out that this article is not to show you how to
copy the Fast Load cartridge. The cartridge is such good value
for the money that building one yourself costs more than buying
it outright. The code itself is of no use because it w i l l not run by
just loading and running it at $8000 - it is much more involved
than that. The value lies in being able to put wedges in BASIC
and set vectors that are completely transparent to other pro
grams. Al l this and your program occupies no memory. The
memory area at $C000 - $CFFF is fought over by so many
programs. There are times when I want the DOS wedge and
another program in memory at the same time. This is impossible
because they conflict at $C000.

To make your own invisible program, it is necessary to under
stand the normal control line operation of the expansion port.
These are the lines available:

EXROM - This line is normally high (1). To tell the PLA that you
want the CPU to read the external rom at $8000, this line is set
low.

The Transactor

ROML - This line is a type of decoded address line. When the
CPU wants to read the external ROM at $8000, this line is pulled
low or 0. ROML wi l l never go low if the EXROM line is not low.

RESET - This line is usually high when the computer is running.
Its purpose is to prevent the CPU from trying to execute ML
instructions when the computer is cold started. This allows the
other chips to reach their "normal" states before the CPU
addresses them. RESET is low during reset time. The computer
would act flaky without a RESET line. The RESET line goes low
in only two normal operations:

1) When the computer is turned on.
2) When the reset button is pressed on the computer.

I/O 1, I/O 2 - These lines are intended for selecting an external
I /O device, e.g. Adding an ACIA or a CIA chip. Selection is done
by pulling the line low. This is done when you do a read or write
to $DE00 - $DFFF. I /O 1 is the area from $DE00 - $DEFF and
I /O 2 is $DF00 - $DFFF.

November 1987: Volume 8, Issue 0 3 49

Now, let's look at the invisible cartridge - see Figure 1. The chip
is a 7407 hex buffer and so if a low or a 1 is put in , a low or 1
comes out. When the computer is turned on, the RESET line is
low. This causes the EXROM line to be low. The line is held low
for a period of time, after reset, by the capacitor. When the
computer reads the $8000 area it wi l l see the EXROM line in a
low state and use ROML to address the external cartridge. If it
finds the autostart sequence, it then passes control over to the
cartridge code. Al l this time, the EXROM line has been held low
because ROML line is low.

To review the concept: The RESET line starts the sequence but
the ROML line holds the EXROM line low while the CPU is
reading code from the $8000 block. If the CPU stops executing
code for a period of t ime, then the cartridge at $8000 wil l
disappear (EXROM stays high because ROML is high). The
cartridge code sequence is: normal cold start initialization, set
your own vectors, and then pass control to BASIC.

The question now arises "How do I get the code to reappear at
$8000, now that the cartridge is invisible?". If a read or write is
done to $DE00, then the I /O 1 line wi l l go low causing the

EXROM line to go low. The capacitor wi l l hold the line low for
period of time. Just enough, so that when a read or write is done
to $8000, the ROML wi l l be pulled low by the CPU because
EXROM is still low. In this case, I /O 1 line starts the sequence
but the ROML line, again, holds it.

One of the vectors that you set in the cold start code could point
to code in the cassette buffer, the $02A7 - $02FF area, or $C000
block. This code is necessary because it wi l l make the $8000
code visible again. The drawback is that using the above areas is
dangerous because other programs like to use these same spots.
The answer is in using the I /O 2 line. You wil l notice from Fig.l
that I/O 2 is connected to the CS (selected by a low) through a
buffer. When you do a read of the area from $DF00 - $DFFF you
wi l l see code. The magic thing about this code is that it is really
located in the rom chip at $9F00 - $9FFF. You appear to see it at
I /O 2 area because of the way the chip is selected.

Let's look at how this type of cartridge can be used in your own
code. Suppose you would like to implement a wedge in basic.
When the machine is turned on, the RESET line is pulled low
causing the EPROM at $8000 to appear. The cartridge stays

visible because of the capacitor on the EX
ROM line. The code at $8000 is executed

40 0801 .opt p4 because the key code exists. You make a
50 0801 store = $fb ;address for loop storage jump to the $DFF0 area to initialize I /O
60 0814 .bas ml devices, perform the RAM test, set up page
90 0814 ml = * zero kernal locations and then the I /O vec

100 0814 a9 00 Ida #$00 ;set up for read write loop tors are set. Chrget and various zero page
110 0816 85 fb sta store BASIC pointers and finally the vectors at
120 0818 a9 80 Ida #$80 $0300 - $030B are set. It is here that you
130 081a 85 fc sta store + 1 can now set the BASIC error vector at $0300
140 081c aO 00 Idy #$00 to point to your code at $DF00. When the
150 081 e a2 00 Idx #$00 ;completely d ischarge ca

pacitor for reading eprom
BASIC interpreter errors out because it does
not recognize a command, the error vector

160 0820 loop = * wi l l point to your code at $DF00. The code
170 0820 8e 00 de stx $de00 at $DF00 wi l l do a read or write to $DE00.
180 0823 ca dex This wi l l cause the EXROM line to go low
190 0824 dO fa bne loop and the eprom to appear at $8000. You can
200 0826 l o o p l = * ; loop for reading eprom now jump to your code in the EPROM to
210 0826 8c 00 de sty $de00 check the chrget routine for your command.
220 0829 b1 fb Ida (store),y ;read ep rom If it is your wedge then the command is
230 082b 91 fb sta (store),y ; store to ram at same

m e m o r y locat ion
carried out, if not then you jump to the
normal error handling routine.

240 082d c8 iny
250 082e fO 03 b e q a d d I can see many uses for this type of pro
260 0830 4c 26 08 jmp l oop l graming and I think that many of you wi l l
270 0833 a d d = * ;if low byte is zero then

increase high byte by one
also. Included here is a little machine lan
guage program that wi l l make the code

280 0833 e6 fc inc s to re+ 1 from the Fast-Load cartridge appear and
290 0835 a5 fc Ida store + 1 then store it to normal ram at $8000.
300 0837 c9 aO c m p #$a0 ;if h igh byte is equal to

$a0 then e n d
310 0839 fO 03 b e q end
320 083b 4c 26 08 jmp l oop l
330 083e e n d = *
340 083e 60 rts ;return to bas ic .program

can now b e read with a
moni tor f rom $8000-$9f f f

The Transactor 5 0 November 1987: Volume 8, Issue 0 3

Fiddling About Matthew Palcic
Xenia, Ohio

.. .Contrary to common belief, color graphics are
easily achieved on the CI28 in 80 column mode.

I purchased my 128 in September of 1985, immediately after
they became available in my area. I was looking forward to the
excellent graphics that all of the magazines talked about. I soon
found out that these graphics were nothing short of impossible to
figure out without any technical references. My good friend,
Lowell, is a Doodle expert. After seeing the limited capability of
the 128, he became very unimpressed with the 80 column
graphics. I was far from convincing him that the 128 was worth
the money. People soon figured out how to do hi-res in 80
columns. New drawings and utilities popped up all over.

But these programs all lacked something big: color. I still didn't
know color was possible, until I fiddled around wi th a demo
graphic screen done in 80 columns. I stopped the program and
typed on the 80 column screen. A lot of trash appeared on the
bitmap. I then turned on attributes, and set the attribute pointer
to the same place I was typing. As 1 typed, 1 was getting different
foreground colors on a black background. Lowell still felt this
was nothing spectacular, because hi-res on the 64 allows a
separate foreground and background. I then typed shifted and
reversed characters. With that I got different background col
ors!! The colors worked very similar to hi-res mode of the 64.
This proved that there was a systematic color scheme. 1 just had
to figure it out. With this, Lowell challenged me to convert a
Doodle picture to 80 columns in full color. And because of that
challenge, I wrote this article.

Contrary to common belief, color graphics are easily achieved
on the CI 28 in 80 column mode. The key is to shrink the size of
the screen. 16 colors are allowed on the screen. Each 8 by 8
character space can support a separate foreground and back
ground color. The colors work differently than those of the 8564
VIC—II chip used in 40 column mode. Following this article is a
program that wi l l convert a 40 column graphic screen to the 80
column screen wi th full color.

The first step in creating a color screen is reducing the frame
size. The frame is the actual size of the screen (measured in rows
and columns). For this article, a frame size of 40 columns by 25
rows is ideal. This reduces the bit map area to 8K, leaving
sufficient memory for color. Because a full screen would take up
16,000 bytes of RAM, there would not be enough memory to
support color wi th 16K of VDC RAM. Reduce the frame size by

changing register one (horizontal displayed) to 40. A VIC—II
graphic screen wi l l fit perfectly in the reduced frame. The other
half of the screen wi l l then be used for color memory. For those
wanting to stretch the frame to fill the screen, use double-width
pixel mode. Horizontal registers wi l l need to be adjusted when
using that mode. After adjusting the screen you can then add
color.

The colors are accomplished in RGB mode much differently
than the composite method. In 40 column mode the colors are a
set pattern; each color is assigned a bit pattern. The bit pattern is
not systematic, and the values must be memorized or taken from
a chart. However, RGB color can be arrived at systematically.
Each of the colors in RGB (Red Green Blue) is assigned a bit. A l l
other colors are mixtures of those primary colors. A n intensity
bit is also used to allow shades. The following chart explains
how the bit patterns work, and how intensity affects them.

Intensity Off

Red Green Blue = Color
0 0 0 Black
0 0 1 Blue
0 1 0 Green
0 1 1 Cyan
1 0 0 Red
1 0 1 Purple
1 1 0 Brown
1 1 1 Light Grey

Intensity On

Red Green Blue = Color
0 0 0 Dark Grey
0 0 1 Light Blue
0 1 0 Light Green
0 1 1 Light Cyan
1 0 0 Light Red
1 0 1 Light Purple
1 1 0 Yellow
1 1 1 White

November 1987: Volume 8, Issue 0 3 The Transactor 51

Because of the systematic patterns in RGB, a direct transfer of
composite color memory to VDC color memory would result in
incorrect coloring. The following chart shows the difference
between the assigned colors in composite mode and those of the
RGB mode.

Composite Colors RGB Colors

0 = Black 0 = Black
1 = White 1 = Dark Gray
2 = Red 2 Dark Blue
3 = Cyan 3 = Light Blue
4 = Purple 4 = Dark Green
5 = Green 5 = Light Green
6 = Blue 6 = Dark Cyan
7 = Yellow 7 = Light Cyan
8 = Orange 8 = Dark Red
9 = Brown 9 = Light Red

10 = Light Red 10 = Dark Purple
11 = Dark Gray 11 = Light Purple
12 = Medium Gray 12 = Brown
13 = Light Green 13 = Yellow
14 = Light Blue 14 = Light Gray
15 = Light Gray 15 = White

Not only are the colors different in the two modes, but the
foreground and background are reversed. Normal VDC attrib
utes don't work the same as they do in bit map mode. In text
mode, the bottom nibble is used to support the foreground color
as it is in bit map mode. But the upper nibble is used to support a
background color for a character space. These bits are normally
used to support underline, flashing, reverse and alternate char
acters. Attributes are on by default, but to turn them on in case a
program shuts them off you can set register 25, bit 6. You must
also tell the VDC where in VDC RAM you want the attributes.
This is done with registers 20 and 2 1 . 20 is the high byte and 21
is the low byte of the 16 bit address.

With that background on 80 columns, you should be able to
follow my conversion program. The program begins by clearing
the 80 column chip wi th the block fill function. The destination
address must be set at registers 18/19 (high byte/ low byte).
Then place the fill byte in register 31 (i.e. 0 to clear or 255 to fill).
Next, clear bit 7 of register 24 to select block f i l l , and place the
number of memory locations to fill in register 30. Following the
initial write to register 3 1 , there wi l l already be one byte wri t ten.
Selecting a 0 word count (reg 30) wi l l write to 256 bytes of VDC
RAM. The program then blanks the screen with a simple process
involving register 35 (display enable/begin).

The next step, done with the COPY routine, involves copying
color memory from $1C00-$1FFF (7168-8191) to $1300
(4864). This preserves the screen so you can compare the two
modes, or make adjustments to the color table and convert again
without having to reload the hi-res picture. The colors are then
converted with SHIFT to an 80 column equivalent, where
possible. Because 80 columns consists of 8 dark shades and 8
light shades, there wasn't an exact match for each of the
composite colors. The process is to work down to a nibble (4 bits)

and use that nibble as an offset to a 16 byte color lookup table.
Otherwise, a 256 byte lookup table would be needed, and
modifying one color would require 32 bytes to be changed to
modify all occurrences of that color. The offset method requires
only one byte to be changed to fix all 32. The foreground and
background also need to be reversed, as they work opposite in
the two modes. The following chart shows the default color
conversion table. This is stored in variable COLORS and can be
modified where needed.

40 Column becomes 80 Column

00 Black 00 Black
01 White 15 White
02 Red 08 Dark Red
03 Cyan 07 Light Cyan
04 Purple 11 Light Purple
05 Green 04 Dark Green
06 Blue 02 Dark Blue
07 Yellow 13 Yellow
08 Orange 10 Dark Purple
09 Brown 12 Brown
10 Light Red 09 Light Red
11 Dark Gray 01 Dark Gray
12 Medium Gray 06 Dark Cyan
13 Light Green 05 Light Green
14 Light Blue 03 Light Blue
15 Light Gray 14 Light Gray

As you can see, no easy algorithm could make this translation,
and not all colors have a perfect match, unless you would make
more than one color become brown or red, etc.

Next the VIC-II screen at $2000-$3FFF (8192-16383) is sent to
the VDC RAM with VICTOVDC. Because of my inexperience in
machine language I made no attempt to write that routine from
scratch. It is a modified version of the routine found in the 128
Programmer's Reference Guide (Bantam Books). For more de
tails on that type of process, see Paul Durrant's program and
article in the September issue. (Games from the Inside Out)

After the hires screen is transferred, the color can be put in . The
HITME routine simply sets the data pointer (reg's 18/19) to
$2000 VDC (attributes) and copies the translated colors from
$1300. The screen is then turned back on with UNBLANK and.
. .voila!

The process is very quick, especially if fast mode is used. As the
machine language is one program, you can easily use it wi th
other Basic programs, etc. 1 hope that you wi l l not merely use
the routine as it is, but wi l l experiment with the possibilities
proven. The potential is even greater if you replace the 16K
chips with 64K chips. My friend, Lowell, is now working on
getting a 128 and wi l l also install the 64K chips as I have done.
He needed no further proof that the 128 in 80 columns can do
INCREDIBLE color graphics. I'll cover 64K in my next article.
Unti l then, I strongly urge you to play around with all the
registers to see what you can do. After all, look where it got me.

The Transactor 52 November 1987: Volume 8, Issue 0 3

Basic demo For Color 8 0 CL
LM

630 data 3 9 , 1 3 3 , 2 5 4 , 1 6 2 , 0 , 1 6 1 , 2 5 0 , 32
640 data 94 , 13, 32, 6 1 , 1 3 , 1 9 8 , 2 5 4 , 2 0 8

KM 100 rem save"0:viewer.bas",8 KB 650 data 242 , 165, 177, 208, 2 1 , 1 6 2 , 0 , 1 6 1
NG 110 rem * * color 80 viewer * * LN 6 6 0 d a t a 2 5 0 , 32 , 94, 13, 32, 73, 1 3 , 1 9 8
J M 120 r e m * * mat thew palcic * * LB 670 data 156, 208 , 220, 169, 1 , 1 3 3 , 1 7 7 , 76
GP 130 : EJ 680 data 255 , 12, 169, 0, 133, 177, 162, 0
CB 140 graph ic 1 ,1 : graphic 5 , 1 : sys dec(' c027 ') FA 690 data 1 6 1 , 2 5 0 , 32 , 94 , 13, 32 , 87 , 13

: pr in t /go to 40 cols": graphic 0,1 KB 700 data 198, 155, 208, 1 9 1 , 96, 2 4 , 1 6 5 , 2 5 0
JJ 150 if peek (dec (- d00 '))<>198 then gosub 270 EL 710 data 105, 8 , 1 3 3 , 2 5 0 , 1 4 4 , 2 , 2 3 0 , 2 5 1

: rem posit ion code LP 720 data 96 , 5 6 , 1 6 5 , 2 5 1 , 2 3 3 , 1 , 1 3 3 , 2 5 1
LE 160 print "file to load (or $ for d d d i rectory) - EC 730 data 165, 250 , 233, 55 , 133, 250, 96 , 230
MA 170 input •> , ; f$ HM 740 data 250 , 208 , 2 , 2 3 0 , 2 5 1 , 9 6 , 1 6 2 , 31
HK 180 if f$ = "$" then scnclr: directory "dd*" : pr int DO 750 data 142, 0 , 2 1 4 , 44 , 0 , 2 1 4 , 1 6 , 2 5 1

: go to 160 KO 760 data 1 4 1 , 1 ,214, 9 6 , 1 6 2 , 3 1 , 1 4 2 , 0
JH 190 if f$ = , * , t h e n goto 220 BC 770 data 214 , 44 , 0 , 2 1 4 , 1 6 , 2 5 1 , 1 7 3 , 1
PO 200 scnclr: g raph ic 1 FE 780 data 214 , 9 6 , 1 6 2 , 18 ,169 , 32 , 32 , 96
LL 210 b load(f$) ,p7168 EM 790 data 1 3 , 1 6 2 , 1 9 , 1 6 9 , 0, 32 , 96 , 13
JF 220 fast: sys decCcOO"): slow NH 800 data 169, 0, 133, 250, 169, 19, 133, 251
LJ 230 getkey a$: graphic 1,1 BB 810 data 3 2 , 1 6 3 , 1 3 , 2 3 0 , 2 5 1 , 3 2 , 1 6 3 , 13
NJ 240 goto 160 JJ 820 data 230 , 2 5 1 , 3 2 , 1 6 3 , 1 3 , 2 3 0 , 2 5 1 , 32
IH 2 6 0 : PD 830 data 163, 13, 9 6 , 1 6 0 , 0 , 1 7 7 , 2 5 0 , 3 2

HH 270 for j = 3072 to 3522: read x: poke j,x
: c h = c h + x: next

KF
NB

840 data 94 , 1 3 , 2 0 0 , 2 0 8 , 2 4 8 , 9 6 , 1 6 2 , 3 5
850 data 3 2 , 1 1 0 , 1 3 , 1 3 3 , 2 5 5 , 1 6 9 , 0, 3 2

FH 280 if c h < > 4 8 6 6 3 then print "** checksum
error * * ' : stop

A H
LG

860 data 96 , 13, 9 6 , 1 6 2 , 3 5 , 1 6 5 , 2 5 5 , 3 2
870 data 96 , 13, 96

O D 290 return
AK 300 : Source Code For Color 80
PE 3 1 0 d a t a 32 , 22 , 12, 3 2 , 1 7 4 , 13, 3 2 , 146
BL 320 data 12, 32 , 6 1 , 12, 3 2 , 1 8 3 , 12, 32 JD 1000 rem save'0:color 80.src',8

HF 330 data 122, 13, 3 2 , 1 8 7 , 13, 9 6 , 1 6 2 , 18 PA 1010 rem ** source start-up in power assembler
format (aka buddy-128 system)

AP 340 data 169, 0, 32, 96, 1 3 , 2 3 2 , 3 2 , 96 EC 1020 sys4000
1030»=$0c00 MA 350 data 1 3 , 1 6 9 , 0, 32, 94 , 1 3 , 1 6 2 . 24 KA
1020 sys4000
1030»=$0c00

Jl 3 6 0 d a t a 3 2 , 1 1 0 , 13, 4 1 , 1 2 7 , 32 , 96 , 13 EL 1040 .mem
IM 370 da ta 160, 6 4 , 1 6 2 , 3 0 , 1 6 9 , 0, 3 2 , 96 AJ 1050;

BN 380 data 13, 136, 208, 250, 9 6 , 1 6 9 , 0, 133 DJ 1060 ; color 80 color hi-res

BN 390 data 250 , 169, 1 9 , 1 3 3 , 2 5 1 , 32 , 88 , 12 AF
MK

1070 ; composite to rgb converter
1080 ; matthew palcic - 16k v2.1

BK 400 data 230 , 2 5 1 , 32, 88, 1 2 , 2 3 0 , 2 5 1 , 32 IL 1090;
J N 410 data 88 , 1 2 , 2 3 0 , 2 5 1 , 32 , 88 , 12, 96 PL 1100 jsr clear ;main subroutine
CK 420 data 160, 0, 177, 250, 133, 252 , 74 , 74 KG 1110 jsr blank ;table
OB 430 data 74, 7 4 , 1 7 0 , 1 8 9 , 1 3 0 , 1 2 , 1 3 3 , 253 KG 1120 jsr copy

HN 440 data 1 6 5 , 2 5 2 , 10, 10, 10, 10, 74 , 74 DB 1130 jsr shift

N l 450 data 74, 7 4 , 1 7 0 , 1 8 9 , 1 3 0 , 12, 10, 10 BD
CK
CA

1140 jsr victovdc
1150 jsr hitme
1160 jsr unblank M H 460 data 10, 10, 1 0 1 , 253, 145, 250 , 200 , 208

BD
CK
CA

1140 jsr victovdc
1150 jsr hitme
1160 jsr unblank

HH 470 da ta 217 , 96 , 0, 15, 8, 7, 10, 4 OH 1170 rts
FM 480 data 2, 13, 1 1 , 12, 9, 1 , 6, 5 CB 1180;
C N 490 data 3, 14, 169, 0, 133, 250 , 133, 252 KE 1190 clear = * ;clear vdc w/block fill

EG 500 data 169, 2 8 , 1 3 3 , 2 5 1 , 1 6 9 , 1 9 , 1 3 3 , 253 GE 1200 Idx #18 ;set data pointer to 0

CA 510 da ta 162, 4, 3 2 , 1 7 3 , 1 2 , 2 3 0 , 2 5 1 , 230 ME
IK
KK

1210 Ida #0 ;for start of hires
1220 jsr writer
1230 inx JK 520 data 253 , 202 , 208, 246, 96, 160, 0, 177

ME
IK
KK

1210 Ida #0 ;for start of hires
1220 jsr writer
1230 inx

EC 530 data 250 , 145, 252, 200, 208, 249 , 96 , 162 ML 1240 jsr writer
H L 540 data 25, 3 2 , 1 1 0 , 13, 9 , 1 2 8 , 3 2 , 96 FE 1250 Ida #0 ;set fill byte to 0
GG 550 data 1 3 , 1 6 2 , 2 0 , 1 6 9 , 32, 32 , 96 , 13 MC 1260 jsr write

Ml 5 6 0 d a t a 1 6 2 , 2 1 , 1 6 9 , 0, 32, 96 , 1 3 , 1 6 2 PB 1270 Idx #24 ;clear bit 7 of

J O 570 data 1 2 , 1 6 9 , 0, 32, 96 , 1 3 , 1 6 2 , 13 El
FJ

1280 jsr reeder register 24 to
1290 and #127 ;select block fill

10 580 data 169, 0, 32, 96, 1 3 , 1 6 2 , 1 , 169 IP 1300 jsr writer
DE 590 data 40 , 3 2 , 96, 1 3 , 1 6 9 , 3 2 , 1 3 3 , 251 LC 1310 Idy #64 ;clear 64 pages (64*256 =
HD 600 data 169, 0 , 1 3 3 , 2 5 0 , 1 6 2 , 18, 3 2 , 96 16384 bytes to clear)
EJ 610 da ta 1 3 , 2 3 2 , 32, 96, 1 3 , 1 3 3 , 1 7 7 , 169 PK 1320 Idx #30 ;reg 30 is word count

ID 620 da ta 25, 133, 155 ,169 , 7, 1 3 3 , 1 5 6 , 169 BE 1330 Ida #0 ;0 words = 256 bytes

The Transactor 53 November 1987: Volume 8, Issue 0 3

CL 1340; BM 2020 .bytel dark gray
AL 1350 clearl = * GK 2030 .byte 6 medium gray
ED 1360 jsr writer HI 2040 .byte 5 light green
FB 1370 dey DB 2050 .byte 3 light blue
IE 1380 bne clearl NJ 2060 .byte 14 light gray

EO 1390; Ml 2070;
EG 1400 rts EJ 2080 copy = •
IP 1410; FB 2090 Ida #0
KE 1420 shift = * translate color info OK 2100 sta $fa copy color ram
Bl 1430 Ida #0 EO 2110 sta $fc from normal vic-ii
JL 1440 sta $fa GJ 2120 Ida #$1c screen ($1c00)
NF 1450 Ida #$13 color start $1300 OG 2130 sta $fb
El 1460 sta $fb convert $1300 AH 2140 Ida #$13 copy to $1300

GO 1470 jsr conv II 2150 sta $fd
LH 1480 inc $fb convert $1400 ON 2160 Idx #4 copy 4 pages
OA 1490 jsr conv AP 2170;
AJ 1500 inc $fb convert $1500 IL 2180 copyl = *
CC 1510 jsr conv Jl 2190 jsr copyit
FK 1520 inc $fb convert $1600 GJ 2200 inc $fb
GD 1530 jsr conv GK 2210 inc $fd
AP 1540 rls DG 2220 dex
El 1550; OJ 2230 bne copyl
DL 1560 conv = * GD 2240;
NG 1570 Idy #0 GL 2250 rts
CK 1580; KE 2260;
BH 1590 nibbles = * convert foreground MO 2270 copyit = *
KF 1600 Ida ($fa),y get color DD 2280 Idy #0
JG 1610 sta $fc IG 2290;
NN 1620 Isr shift foreground down EJ 2300 copybyte = *
PH 1630 Isr to bottom nibble AE 2310 Ida ($fa),y
BE 1640 Isr AJ 2320 sta ($fc),y
LE 1650 Isr KP 2330 my
HE 1660 tax PN 2340 bne copybyte
PN 1670 Ida colors.x ;get new value EK 2350;
OF 1680 sta $fd store foreground EC 2360 rts
KD 1690 Ida $fc retrieve original color byte IL 2370;
BG 1700 asl ;shift left to clear top nibble CG 2380 victovdc = * translate vic-ii hires to vdc hires
JF 1710 asl IB 2390 Idx #25 set register 25
DG 1720 asl KJ 2400 jsr reeder bit map mode
NG 1730 asl OO 2410 ora #128 bit 7
PK 1740 Isr ;move back to bottom nibble IF 2420 jsr writer
PK 1750 Isr CI 2430 Idx #20 .set attributes at $2000 (vdc ram)
JL 1760 Isr BL 2440 Ida #$20
DM 1770 Isr GH 2450 jsr writer
PL 1780 lax KH 2460 Idx #21
HF 1790 Ida colors.x ;get new value BJ 2470 Ida #0
NM 1800 asl move background to top nibble EJ 2480 jsr writer
NL 1810 asl FD 2490 Idx #1 ;set vdc screen width (reg 1)
HM 1820 asl JO 2500 Ida #40 ;to 40 columns
BN 1830 asl CL 2510 jsr writer
DL 1840 adc $fd combine foreground and

background
MF
OP

2520
2530

Ida
sta

#$20
$fb

;start of vic-ii hires $2000

CL 1850 sta ($fa),y HN 2540 Ida #0
EC 1860 my PA 2550 sta $fa
NE 1870 bne nibbles IP 2560 Idx #18 ;data pointer (vdc) to $0000
EE 1880 rts KG 2570 jsr writer ;for start of vdc bit map
IN 1890; AP 2580 inx
CA 1900 colors = • 40 col color CA 2590 jsr writer
KE 1910 .byteO black PE 2600 sta $b1 ;column counter
OA 1920 .byte 15 white MH 2610 Ida #$19
KC 1930 .byte 8 red OD 2620 sta $9b
JH 1940 .byte 7 cyan ML 2630;
OC 1950 .byte 10 purple HJ 2640 againl = •
AL 1960 .byte 4 green CC 2650 Ida #7 ;8 bytes per character (0-7)
Fl 1970 .byte 2 blue JG 2660 sta $9c
KF 1980 .byte 13 yellow EO 2670;
10 1990 .byte 11 orange OH 2680 again = *

DH 2000 .byte 12 brown MK 2690 Ida #$27 ;40 columns (0-39)
PH 2010 .byte 9 light red BL 2700 sta $fe

The Transactor 5 4 November 1987: Volume 8, Issue 0 3

MA 2710; IC 3400 writer * ;write to vdc register
PG 2720 tranhi = * CJ 3410 stx $d600
BP 2730 Idx #0 CN 3420;
JL 2740 Ida ($fa,x) DB 3430 writel = *

OP 2750 jsr write ME 3440 bit $d600 ;wait for status bit to go high
CD 2760 jsr add LO 3450 bpl writel
EL 2770 dec $fe KP 3460;
LC 2780 bne tranhi JO 3470 sta $d601 ;write value
MF 2790; El 3480 rts
DJ 2800 Ida $b1 IB 3490;
CE 2810 bne half BJ 3500 reed = * ;read vdc ram
KH 2820; GJ 3510 Idx #31
FF 2830 Idx #0 GD 3520;
NB 2840 Ida ($fa,x) LM 3530 reeder = * ;read vdc register
CG 2850 jsr write EB 3540 stx $d600
LM 2860 jsr increase EF 3550;
IP 2870 dec $9c LN 3560 reedl = *

GM 2880 bne again OM 3570 bit $d600 ;wait for status bit to go high
AM 2890; Ml 3580 bpl reedl
BE 2900 Ida #1 MH 3590;
PD 2910 sta $b1 FL 3600 Ida $d601 ;read value
HC 2920 jmp again GA 3610 rts
10 2930; KJ 3620;
NK 2940 half = * AL 3630 hitme = * transfer color from ram to vdc
BH 2950 Ida #0 LO 3640 Idx #18 ;data pointer to $2000 (attributes)
BH 2960 sta $b1 LG 3650 Ida #$20
BO 2970 Idx #0 AD 3660 jsr writer
JK 2980 Ida ($fa,x) KE 3670 Idx #19
0 0 2990 jsr write LE 3680 Ida #0
GF 3000 jsr upthere OE 3690 jsr writer
Bl 3010 dec $9b PF 3700 Ida #0
EL 3020 bne againl HJ 3710 sta $fa
ME 3030; DD 3720 Ida #$13 ;colors are at $1300
MM 3040 rts CJ 3730 sta $fb transfer $1300
AG 3050; JF 3740 jsr ahead
MF 3060 add = * LI 3750 inc $fb transfer $1400
EH 3070 clc NG 3760 jsr ahead
DO 3080 Ida $fa CK 3770 inc $fb transfer $1500
PP 3090 adc #8 Bl 3780 jsr ahead
FD 3100 sta $fa JL 3790 inc $fb transfer $1600
IN 3110 bcc addl FJ 3800 jsr ahead

GK 3120 ; OM 3810 rts
ID 3130 inc $fb CG 3820;
KL 3140; DP 3830 ahead = *
FE 3150 addl = * LE 3840 Idy #0
EE
IN

3160
3170;

rts Al
CF

3850;
3860 ahead 1 = *

Ml 3180 increase = * GG 3870 Ida ($fa),y ;read ram
HP 3190 sec CC 3880 jsr write ;write to vdc
OF 3200 Ida $fb CB 3890 my
HI 3210 sbc #1 IA 3900 bne ahead1
AL 3220 sta $fb ML 3910;
JH 3230 Ida $fa MD 3920 rts
AA 3240 sbc #$37 AN 3930;
LM 3250 sta $fa OH 3940 blank = * ; blank 80 cols
IK 3260 rts KF 3950 Idx #35

MD 3270; BP 3960 jsr reeder
AK 3280 upthere = * GC 3970 sta $ff ;store current screen params
FN 3290 inc $fa HH 3980 Ida #0
0 0 3300 bne up1 IA 3990 jsr writer ;blank it
EG 3310; Ml 4000 rts
GP 3320 inc $fb AC 4010;
IH 3330; DO 4020 unblank = * ;restore screen
EH 3340 up1 = * KK 4030 Idx #35
CA 3350 rts GG 4040 Ida $ff retrieve screen params
GJ 3360; AL 4050 jsr writer ; restore param
MM 3370 write = * ;write to vdc ram IM 4060 rts
EB 3380 Idx #31 MF 4070;
EL 3390; MM 4080 .end

The Transactor 55 November 1987: Volume 8, Issue 0 3

Twin-80 Screen D.J. Morriss
For the Commodore 128 Toronto, Ontario

Use the extra VDC memory for another 80-column screen

The 8563 Video Display Controller (VDC) chip that controls the 80 -
column screen on the C- l28 has its own RAM memory completely
outside the C- l28 memory space. The VDC uses 8 K bytes to store
the complete 512-member character set, 2 K bytes for screen
memory, and another 2 K bytes for attribute memory (one byte of
each for each screen location in the 80 column by 25 line screen).
Thus, a complete screen and character set requires 12 K bytes.
Since 12 K byte chips are somewhat scarce, the VDC in fact has 16 K
bytes of RAM available. Various uses have been proposed for this
extra memory: a tiny RAM disk, for example. Coincidentally, the
unused 4 K bytes are exactly what is needed for a completely
separate screen memory and attribute memory. This program sets
up such a screen, and allows you to toggle between the two screens,
in either immediate or program mode.

What Must Be Done

In order to support such a double screen, both the VDC and the
screen editor must know where, in VDC RAM, screen memory and
attribute memory starts for each of the two screens. The VDC needs
to know where to look for information when it is drawing the
screen, and the screen editor needs to know where to put informa
tion in response to PRINT commands. The VDC looks to its own
internal registers $0C and SOD to contain the address, in VDC RAM,
of the start of screen memory, while registers $14 and $15 contain
the address of the start of attribute memory. Both these register
pairs are in high-byte, low-byte order; just the reverse of normal
8502 order. The default 80-column screen uses the first 2 K bytes of
VDC RAM for screen memory, and the second 2 K byte block for
attributes. I have chosen to leave these untouched, and set up the
second screen memory in the unused region from 4 K to 6 K, and
the second screen attributes from 6 K to 8 K; above 8 K, character
RAM starts. So to inform the VDC about the new memory alloca
tion, all that is necessary is to toggle VDC register $0C between the
values 0 and $10, and toggle VDC register $14 between the values
$08 and $18.

The screen editor must also know where to put things. It relies on
C- l28 RAM location $0A2E, which contains the page of the start of
screen memory in the VDC RAM, and location $0A2F, which
contains the page of the start of attribute memory in VDC RAM.
Since only the page is stored, the screen editor insists that both
screen memory and attribute memory start on page boundaries,

The Transactor

although the VDC does not make the same demand. So to inform
the screen editor about the new memory allocation, it is only
necessary to toggle $0A2E between the values 0 and $10, and
toggle $0A2F between the values $08 and $18.

It is also necessary to reset values in other VDC registers and in C-
128 RAM. These locations contain information about cursor loca
tion, windows that are enabled, locations of tab stops, quote mode,
number of inserts, type and size of cursor etc. Specifically, locations
from $E0 to $F9, $0354 to $0361, and $0A2B in C- l28 RAM all
contain information that defines the precise nature of a screen.
These are the locations that the screen-editor routine SWAPPER
switches when you transfer between 40 and 80-column screens.
Similarly, in the VDC, registers $0A, $0B, $0E, $0F, $18, $1 A, and
$ 1D contain information that also defines the precise nature of a
screen. When you toggle between 80- column screens, the values
in all these locations must be stored, while stored values are placed
in all these locations.

What Does It

The switch between screens is triggered by a custom ESCape
sequence. There are twenty-seven (twenty-eight?) default ESCape
sequences programmed into the C- l28 ROM; they add a lot of
power and convenience to the screen editor. Commodore also
designed-in flexibility; at the point in the ESCape sequence han
dling routine where the next key after the ESC has been detected
and stored in the accumulator, the ROM routine jumps through an
indirect address in RAM at $0338 - $0339, before implementing the
default ESC sequences. Resetting this vector to point to a new
routine opens up the possibility of two hundred and fifty-six
different ESCape sequences!

In this application, the sequence ESC - UP ARROW is used to toggle
between the two screens. As is the case with the normal ESCape
sequences, this means pressing and releasing the ESC key, then
pressing the UP ARROW key. In program mode, PRINTing
CHR$(27) and an UP ARROW (or CHR$(94)) will accomplish the
same effect. The UP ARROW is not a cursor key; it's the exponentia
tion symbol, between the RESTORE and the ASTERISK keys.

If you prefer some other sequence, look at the sixth number in the
fourth DATA statement in the BASIC loader program,

5 6 November 1987: Volume 8, Issue 0 3

RELOCATING/TWIN. It's 94, the decimal CHR$ value for the UP-
ARROW. Replace this one byte with the CHR$ code for the character
of your choice, and the change is made. If you choose one of the
default ESCape sequences, this custom application wi l l take prece
dence, as long as you are in 80-column mode, since this special
handling routine comes before the default routine.

What Do You Get

The two 80 - column screens available with this program are
completely equal and independent. Each screen has its own tab
settings, colors, cursor type, and windows. Either screen can be set
to reverse or normal mode, or cleared, independently of the other.
When you toggle between the two screens, the cursor returns to the
spot (and window) where it was when you left the screen. If the
cursor for that screen was a non-flashing underline when you left, it
will be the same when you come back. If you have used some of the
VDC registers to change the size of the block cursor, that new cursor
wil l remain in effect for the particular screen in which it was set up.
If you are in quote mode, typing a program line when you toggle
out, you wil l be in quote mode when you toggle back. In fact, it's
easy to lose track of which screen you're looking at. Location $0A2E
is zero for the normal screen, and $80 if the new screen is active. But
there is no real reason to worry about this, since THE TWO
SCREENS ARE COMPLETELY EQUIVALENT!!

In one important way, this double screen arrangement is superior to
the windows available on the C-128. If you list a long program line,
one that runs to two or more physical lines, the screen editor makes
a note of this in what is called a line-link map, found in C-128 RAM
from $035E to $0361. If you create, and then collapse a window,
this line-link map is destroyed. If you were to press RETURN on
one of these long lines, only the one physical line would be
recognized. When you toggle between the Twin-80 screens, how
ever, the line-link map is stored and replaced with the appropriate
one from storage.

Who Needs It

If you want to be able to display twice as much in the way of results
from a program, you need it. If you want a program to PRINT
constant progress reports, while results are left secure and un-
scrolled on the other screen, you need it. If you would like to look at
two parts of a long program listing at the same time, you need it. If
you're using the TRACE utility, and would like to list various lines of
the program, without destroying the TRACE values, you need it. If
you have a HELP screen, full of information that you keep thumb
ing through manuals for, you certainly need it. Or if you just hate the
idea of 4,096 bytes of memory going to waste and never being used,
you need it.

The Programs

RELOCATING/TWIN

Free RAM in Bank 15, where this routine is located, is getting
cluttered up with various custom routines, which always seem to
compete for the same space. To alleviate this problem somewhat,
this BASIC loader for TWIN-80 is a relocating one. The program

asks you where in memory to put itself, then puts itself there and
activates itself - if you just press RETURN in response to this
prompt, the program wil l start at location 6144, which should be
safe. The bytes that must be adjusted for each new starting point are
flagged by minus values in the DATA statements. The program does
all the adjusting; just be careful not to miss any minus signs. There
are many possible locations in Bank 15 RAM (see Table 1); surely
they won't all be occupied by some other important utility. If you are
really tight for space, the first 32 bytes of the routine are needed only
for installation, not for the actual routine.

Although the entire routine runs to 224 bytes, there are only 206
values in the DATA statements. Each of the 18 negative values
generates two bytes to be POKEd into memory.

Remember, if you choose to use a different ESCape sequence to
switch screens, both the VERIFIZER report code for the DATA line,
and the total checksum, CK, wil l be off.

TWIN-80.ASM

This program, my first with a symbolic assembler, was written using
the "Power Assembler" (formerly "Buddy") 128 Macro-Assembler
from Spinnaker. As an alternative to doing the same job using the
built-in Monitor assembler, Buddy leaves me ecstatic, verging on
euphoric. If you have a different assembler, you should have no
trouble converting the power assembler source code to work with it;
the most likely thing that you'll have to change are the long symbol
names with the embedded apostrophes. So, for example, the label
"save'bank" could be changed to "SAVBNK" to work with another
assembler.

The set-up routine simply resets the ESCVEC vector, temporarily
sets Bank 15, momentarily activates both screens to clear them of
garbage, and restores the bank setting before exiting.

The new ESCape handler checks for the special ESCape sequence,
and that you are using the 80-column screen, before switching all
the necessary locations.

Communication with the VDC is aided by the two ROM routines,
READREG at $CDDA and WRITEREG at $CDCC. Both routines
move information between the accumulator and the VDC register
whose number is found in the X register. The routines take care of
the "handshaking" between the C-128 and its independent-minded
VDC.

What Next

Clearly, we haven't heard the last of multiple screens for the VDC.
For example, if you are will ing to live with one colour for the entire
screen, no under-lining, no flashing, and only one character set,
you can disable the attributes. Then the two, 2 K byte blocks of
attribute memory would be freed up to provide room for two more
independent screens; a total of four. Since disabling the attributes
eliminates one of the character sets, this means half of the 8 K of
character RAM is available; two more screens, for a total of six! Or
150 lines of 80-column text, just a key-stroke or two away!

The Transactor 57 November 1987: Volume 8, Issue 0 3

Table 1

AVAILABLE RAM IN BANK 15

Location (Dec) Purpose

OC
LF
OP
IG

NJ
NM

AJ
GG
MD
KM

El
MK
PG
Al

CK

OH

HL
GK
KK
NE
PA
MN
LN
FK
Al
ED
CO
AD
KN
FC
OP
CG
DD
AG
EE
Al

1024-2047
2816-3071
3072 - 3327
3328 - 3583
3584 - 4095
4864 - 7167
7168- 16383

40-column screen
Cassette buffer
RS-232 Input buffer
RS-232 Output buffer
Sprite storage area
Applications Program area
High Resolution Screen
(after GRAPHIC 1)

1000
1010
1020
1030

1040
1050

1060
1070
1080
1090

1100
1110
1120
1130
1140

1150

1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360

Twin-80: Relocating BASIC Loader

rem * * * relocating loader for "twin-80" * * *
rem * * * by d . j . morriss, toronto, Ontario * * *
fast: ck = 0
inpufstar t ing location (decimal)[7 spaces]6144
[6 left] •; ad : if ad>16165 then 1030
for k = ad to ad + 223
read x: ck = ck + x : if x = >0 then poke k, x
: goto 1080

hb = int((ad + abs(x))/256): lb = ad + abs(x) -256*hb
poke k, lb : k = k + 1 : poke k, hb
next
if ck < > 15424 then print"*** error in data
statements * * * " : stop
hb = int((ad + 32)/256): poke ad + 6, hb
lb = ad + 3 2 - 2 5 6 * h b : poke ad + 1 , lb
sys ad

print:print" tw in -80 screen activated!"
print:print" press escape, then up-arrow, to toggle
between screens!"
prinLprint" bsave from "ad" to "ad + 223" (decimal)
to save obj program!"
end
data 169, 32, 141, 56, 3,
data 57, 3, 3 2 , - 1 2 1 , 169,
data 255, 32 , -140 , 169, 147,
data 32 , -140 , 76, -133, 2 0 1 ,
data 76, 193, 2 0 1 , 165, 215,
data 247, 3 2 , - 1 2 1 , 32 , -140,
data 174, -167, 142, 43, 10,
data 25, 181 , 224, 188,-169,
data 224, 202, 16, 243, 162,
data 3, 188,-195, 157,-195,
data 3, 202, 16, 240, 160,
data 32, 218, 205, 72,
data 205, 104, 153,-216,
d a t a - 1 3 3 , 173, 0, 255,
data 141, 0, 255, 96,

173, 46,
162, 12,

73, 16,

data
data
data
data
data

255,
46,
47,
20,
16,

173,
0,

96,
10,
10,
32,

0,
204, 205,

18, 24,

169, 19,
147, 32,
32, 210,
94, 240,
4 1 , 128,

173, 43,
141,-167,
157, -169,

13, 189,
152, 157,

6,

185,-216,
136, 16, 236,
141,-168, 169,
173,-168,

10, 73,
32, 204,

141, 47,
96, 96,

0, 0,

141
210
255

3
240

10
162
148

84
84

190,-209
32, 204

76
0
0

141
173
162

0
0

141,
16,

205,
10,

0,
79,

CH
OE
PH
CC
HI

NM
GJ
GK

1370 data 0,
1380 data 7,
1390 data 0,
1400 data 128,
1410 data 11 ,
1420 data 16,
1430 end
1440 scratch"relocating/twin":dsave"relocating/twin"

3, 0, 0, 24,
7, 0, 0, 0,

128, 128, 128, 128,
128, 128, 0, 0,

14, 15, 26, 24,
0, 240,

79,
0,

128,
0,

29,
32, 2 3 1 , 255

94, 27
0, 0

128, 128
0, 10

160, 231

Twin-80: Source Code in Buddy 128 Format.
Load address: 7169

GP 1000 scratch'twin/SO'dsave'twin/SO'end
IG 1010;
CH 1020;
CI 1030; twin--80asm
Gl 1040;
NF 1050; submitted by: d. j . morriss
LO 1060; 769 coxwell avenue
AL 1070; toronto Ontario
PK 1080; m4c 3c6
LI 1090; (416)466 2791 (home)
PC 1100; (416) 967 1212 (work)
NF 1110; ext3276
II 1120 sys4000

KO 1130; variable table
10 1140:
CG 1150 mode = $d7 bit 7 = 1 for 80 column
DE 1160 pnt = $e0 start of zero page screen parameters
LD 1170 escvec = $0338 location of escape routine wedge
JE 1180tabmap = $0354 start of active screen tabs and line links
PF 1190 curmod = $0a2b shadow for vdc reg # $0a
EP 1200vm3 = $0a2e ram shadow for hi byte of vdc
KA 1210: start of screen
OA 1220vm4 = $0a2f ram shadow for hi byte of vdc
MD 1230: start of attributes
JD 1240 escape $c9c1 normal escape handling routine
IG 1250 writereg = $cdcc writes to vdc register
HA 1260 readreg = $cdda reads from vdc register
HJ 1270mmucr $ff00 find bank setting here
FN 1280 jbsout = $ffd2 kernal print routine
AH 1290 table'1'length = = 26 number of values in table 1
EH 1300table'2'length = = 14 number of values in table 2
NB 1310 table'3'length = = 7 number of values in tables 3 and 4
MJ 1320:
DD 1330 ;••*•• end of variables • • • • •
EB 1340 .org $1300 assembles into empty ram
KO 1350 .mem
BE 1360 ;••• set-up routine •••
OM 1370:
NP 1380: Ida #<new'handler ;reset escape vector
NH 1390: sta escvec ;to point to new
JM 1400: Ida #>new'handler ;routine
BJ 1410: sta escvec +1
AA 1420:
DA 1430: jsr save'bank save bank and set bank 15
EB 1440:
NF 1450: Ida #$93 clear low screen
PD 1460: jsr jbsout
CD 1470:
CK 1480: isr vdc'toggle configure for high screen
GE 1490:
NK 1500: Ida #$93 clear high screen
BH 1510: jsi jbsout
EG 1520:
CP 1530: jsr vdc'toggle configure for low screen and
EE 1540 jmp old'bank restore bank setting
DA 1550 using rts to get to basic
Ml 1560
HB 1570 •• end of set-up routine ••
AK 1580
GM 1590 •• new ecape handling routine •
EL 1600
LI 1610 new'handlet •
LB 1620: cmp #$5e is it up arrow
AE 1630: beq do'it yes, so go to special routine
EJ 1640 norm'out jmp escape no, so go normal route
GO 1650:

The Transactor 58 November 1987: Volume 8, Issue 0 3

JN 1660 do'it Ida mode ;is 80-column being used BL 2080 ;rts to return to basic
KH 1670 and #%10000000 ED 2090 • •• end of new handler routine ••••
CO 1680 beq norm'out ;no, so go normal route IK 2100
OA 1690 FE 2110 • • subroutines *•• •
BB 1700 jsr save'bank isave bank and go bank 15 JP 2120 • • routine to stash bank & set bank to 15 ••
CC 1710

jsr isave bank and go bank 15
ND 2130 save'bank Ida mmucr isavebankin

CJ 1720 jsr vdc'toggle ;switch memories GM 2140 sta tableO+ 1 itable 0, then set
GD 1730

jsr vdc'toggle
OA 2150 Ida #$00 ;tobank15

CH 1740 Ida curmod iswitch curmod and tableO KC 2160 sta mmucr
PG 1750 Idx tableO HI 2170 rts
JH 1760 stx curmod IP 2180
BM 1770 sta tableO PF 2190 • • • • routine to fetch and reset old bank • • • •
IG 1780 AK 2200 old'bank Ida tableO+1 ;get old bank
CN 1790 Idx #table'1 'length-1 interchange values in DM 2210 sta mmucr iand store in mmu
GA 1800 loopl Ida pnt,x i table 1 with page 0 JL 2220 rts
FO 1810 Idy tablel ,x ifrom $e0 to $f9 KC 2230
OP 1820 sta tablel ,x IM 2240 • routine to toggle between screens in vdc memory •*
CP 1830 sty pnt,x FM 2250 vdc'toggle Ida vm3 itoggle value of vm3
MN 1840 dex

pnt,x
BE 2260 eor #$10 ;between$00and$10

LG 1850 bpl loopl LD 2270 sta vm3
IL 1860 EC 2280 Idx #$0c ;store new value in
BG 1870 Idx #table'2'length-1 interchange the tab maps JD 2290 jsr writereg ;vdc register # $0c
PL 1880loop2 Ida tabmap.x ;and line link maps AH 2300
DK 1890 Idy table2,x iwith values in table 2 BM 2310 Ida vm4 itoggle value of vm4
BF 1900 sta table2,x NK 2320 eor #$10 ;between$08and$18
LI 1910 tya LH 2330 sta vm4
IL 1920 sta tabmap.x FF 2340 Idx #$14 istore new value in

GD 1930 dex KG 2350 jsr writereg ;vdc register #$14
IM 1940 bpl loop2 FE 2360 rts
CB 1950

bpl
GN 2370 • • • • end of subroutines • * • •

Dl 1960 Idy #table'3'length-1 AM 2380
GF 1970loop3 Idx table3,y interchange the values DK 2390 tableO = •
LH 1980 jsr readreg ;in table 4 with the DN 2400. byte 96,0
10 1990 pha ivalues in selected vdc KL 2410 tablel = •
LO 2000 Ida table4,y ; registers KG 2420 byte 0,16,0,18,24,0,0,79,0,0,3,0,0,24,79,94,27,7,7,0,0,0,0,0,0,0
KM 2010 jsr writereg i registers are listed in BN 2430 table2 = •
EK 2020 pla

writereg
itable 3 CF 2440 byte 128,128,128,128,128,128,128,128,128,128,0,0,0,0

KN 2030 sta table4,y IO 2450table3 = •
FK 2040 dey

table4,y
Al 2460 byte 10,11,14,15,26,24,29

JD 2050 bpl loop3 PP 2470 table4 = .
A! 2060

bpl
GD 2480 byte 160,231,16,0,240,32,231

AP 2070 jmp old'bank ;get old bank, and use its GJ 2490 end

Jfflfontgfjt assembly ̂ patent
Symbolic Assembler for the C-64 and a Disk Drive
* W r i t t e n i n 100% Machine Language

* Not a Snai l -paced BASIC parasi te

* No Subrout ine Cal ls made to $AOOO-BFFF

* A l l D isk Operat ions Executed Through

Standard K E R N A L Jump Table

* Not Copy Protected: Archival Backup Encouraged

* Can use R A M under ROM for Object Generation

or for Storage of Text and Symbolic Labels

* Extensive D i sk Support

* 32 Immed ia te Commands

* 26 Powerful Pseudo Opcodes

* 26 User Imp lemented Pseudo Opcodes

* Move, Copy, Swap, Delete, Renumber

* Au to L i ne Number i ng for Easy Text E n t r y

* Forward or Reverse Object Generat ion-

(Good for Spel l ing Str ings Backward)

* Add i t i on , Subt rac t ion , Mu l t i p l i ca t i on , D i v i s i on ,

Sh i f t le f t , Sh i f t r i gh t

Documentation Includes Full Listing
of Zero Page as Employed by M A S

The Transactor 59 November 1987: Volume 8, Issue Q 3

SCREEN DISPLAY SAMPLES

100 cmp «S0F beq modgol
101 cmp SOI beq modgot
102 cmp SO? beq modgol
103 cmp S06 beq modgol
KM cmp »S0A beq modgol
105 cmp «S08 beq modgol
106 jmp somewhere else
107
108modgot do a module
109 six module
110 Ida modveclors + 1.x pha
111 Ida modveclors.x pha
112 Ida modstalus.x pha
113 ni
114
115some slringS out; XR = Length
116 Idy lab
117loop
118 mov strS.x (screen meml.y
119 mov color (color meml.y
120 iny dex
121 bne loop
122 rts
123

800message alphabet
810 rev 26 , spell nexl 26 bytes backwards
820 asc "abcdefghijklmnopqrstuvwxyz"
830 org sprite storage
840sprile1 obj "1: sprite datal"
850sprile2 obi "8 : sprite dala2"
860sprile3 obj Tsprite dala3"
870
880 org SC880. start somewhere safe
890 out 1 ; blank I ' i l l screen
900 mas ; define as master linker
910
920 Ink "I start"
930 Ink "1 bodyl"
940 Ink 8 body2"
950 Ink e body3"
960 Ink "1 end"
S/OEml ol file
980 end

$ 2 9 95 All Orders Shipped 1st Class
Avai lable Exclusively From

Mountain Wizardry Software
P.O. Box 66134

Portland, OR 97266

Memory Lane Chris Miller
Kitchener, ON.

Psssst,.. .wanna know a really
sneaky place to stash stuff in the 128?

By now the MMU (Memory Management Unit) at $FF00 in the
CI28 is fairly wel l understood. But there is more, a lot more
involved in really being able to stroll down its memory lane
(without getting lost or tired or mugged).

Under-the-Rug

Normal practice (mine anyway) involves writ ing only to the low
bytes ($D507 and $D509) of the page pointer registers. Then,
new and old system pages wi l l always be in shared RAM. 0
which even overides the $ff00 memory configuration setting
and gives rise to a slick way of accessing any page of RAM 0 from
RAM 1.

Pssst! Hey Mac (Maxine) wanna know a really sneaky place to
stash stuff in the 128? Okay, just step around the corner into this
here alley.

Enter the following code through the monitor - put it at $140.

;no interruptions please 0140
0141
0143
0146
0148
0151
0153
0156
0158

0161
0162
0164
0166
0169
0172
0175

sei
Ida #7e
sta ffOO
Ida #f1
sta d 5 0 8
Ida # 2 0
sta d507
Idx #2

; ram 1 with i/o visible

;bit 0 at $d508 is the key to this tr ick

;swap pages $00 and $20
;$00 a n d $01 don' t swap

sta 2000,x ;store blanks at "original" zero page
loop

inx
bne 0158
Ida # 0

d508
d507
ffOO

sta
sta
sta
brk

; restore the registers

;return to monitor

G 140, then try to find the 254 $20's. Betcha can't. Okay, now
use the same setup but LDA 2000,X then STA 8000.X in the
looping part. Now after G 140 you wi l l see that 8002-80ff (in
bank 1) is all spaces. So those spaces must have been some
where, otherwise how could you get at them again?

Way back when I was stil l an un-enlightened goof I thought I
had a back door to 8563 RAM. Now that I am an enlightened
goof 1 believe that these bytes are sitting at 02—ff in RAM 1 (not

Here an Interrupt, There an Interrupt,
Everywhere an Interrupt

Here is a handy little routine to make assembly language
programming in out -o f - the-way banks a bit more homey on
the 128. Brian Hilce, author of Pro-Line's Cocompiler, put me on
to it so that I would stop griping to h im about what a bother it
was trying to write code to run in Bank 1. The following IRQ/
BRK wedge allows interrupts to be serviced no matter which
bank of memory one's code happens to be executing in.

First point the BRK vector at the normal IRQ service routine.
Then just point the IRQ vector at your own routine which must
be in common RAM. Normally this wi l l be below $400. Al l you
do when an interrupt hits your routine is put a $00 at $ff00 (Bank
15) and execute a BRK instruction followed by a NOP. Execution
resumes following the NOP. The original $FF00 and register
values wi l l be on the stack-restore them. An RTI gets you back
completely intact to wherever you came from. Sixty times a
second; works like a charm. Looks like this:

sei
Ida
sta
Ida
sta

788
790
789
791

;first point brk vec
;at irq service code

Ida #< i rqs rv ;then point irq vec
sta 788 ;at your switch
Ida #> i rqs rv
sta 789
cli
rts

shared RAM 0). irqsrv = * ; interrupt w e d g e
Ida #0

A Zero Page of Your Very Own sta $ff00 ;set bank 15 conf ig
brk ;service irq thru brk

One of the neatest features of the 128 is its relocatable, or more nop
precisely, swappable zero page and stack areas. In the above pla ;old conf ig on stack
example page $00 and page $20 are swapped. A write to $ff sta $ff00 ; restore it
would show up at $20ff in shared RAM 0 (always RAM 0) but a pla ; registers too
write to $20ff would appear at $ff in unshared RAM 1. tay

The Transactor 6 0 November 1987: Volume 8, Issue 0 3

pla
tax
pla
rti ;return from interrupt

The same general idea could be used in the 64 to take advantage
of interrupt servicing from the hidden RAM below Kernal ROM.

If your program was using its own zero page you might want to
push the interrupted $D507 setting on the stack and stick a $00
there prior to the BRK so that the IRQ routine would not mess
with your pointers, then, right after the BRK:NOP, pull $D507 off
the stack and reset it. Fancy that - over 250 bytes of wonderful,
beautiful, absolutely free and uninterrupted zero page for your
program.

Keeping in Touch With the Kernal

Even though the 128 has a bunch of new Kernal routines for
calling out -o f -bank code, I tend to shy away from them. These
tend to jump all over the place, slowing things down and
generally confusing the daylights out of me. Besides, it's usually
the Kernal I'm calling in the first place. I like to write my own
JSRFAR routine to handle Kernal calls from other banks. Usually
there is room low on the stack ($140-$ICO) or in the system
input buffer ($200-$29f) for this sort of thing. The fol lowing lets
you call the Kernal from Bank 1. One byte of memory is needed
to save the .Y register.

;.Y is saved in HOLDY
; and loaded with the low byte of the Kernal rout ine
; prior to cal l ing FARKERNAL

FARKERNAL = *

kernrtn

sty kernr tn ;self m o d jsr
Idy #0
sty $ff00 ; bank 15
sty $d507 ;your own Z page Mr. Kernal sir.
Idy holdy ;in case it's needed
jsr $ffff ;call routine
= * - 2
p h p ;save status
pha ;and .A
Ida # m y z p g ; my zero page back
sta $ d 5 0 7
sta $ff02; ;latch to bank 1
pla ; remember .A
pip ;and status
rts

Here is how FARKERNAL would be used to PRINT from Bank 1:

print = *
sty ho ldy ;save .y
Idy #$d2 ;<$ffd2
jmp fa r ke rna l

If you were converting a program from the 64, this print routine
would replace the PRINT = $FFD2 assignment. The rest of your
program should never know the difference.

Notice again that your very own, personal, private, exclusive
zero page wi l l still remain that way. Neither interrupts nor
Kernal calls need be allowed to chew on it.

Share and Share Alike

The system keeps a $04 at $d506 that provides an essential 1K
of common RAM at the bottom of memory. So normally, no
matter what bank you do business with, common RAM from
$00 to $3ff wi l l be visible. Almost every big ML program is going
to have to move a little code into this area in order to access all of
memory. Unhappily, the operating system hogs a good deal of it.
But despair not, for this area can be expanded and even moved
about at wi l l . Overseeing this is the RAM configuration register
at $D506. Only the low nybble is used in the 128. The two low
order bits determine the amount of RAM to share. Paired values
of 0,1,2 or 3 result in IK , 4K, 8K or 16K respectively of shared
RAM. Bits 2 and 3 determine whether low, high, or both low and
high RAM is held common.

Common RAM is always RAM 0. The $D506 setting takes
priority over the $FF00 configuration but not over the page
pointers. If you just can't seem to fit all your relay code below
$400, or if you want to be able to access the 40 column screen
directly from Bank 1, then keep $D506 in mind.

There is another situation in which expanding common RAM is
virtually essential. ROM for the Z80 CPU resides from $00-$fff.
At first glance it would seem impossible to switch Banks in Z80
mode without whipping memory right out from under you. No
common RAM to work from. . . unless you were to first store,
say, a % 1011 at $D506, locking the top 16K ($C000-$FFFF) into
RAM0.

That Secret Place Again

Writing a $00 to $D506 disables all common RAM (except $ff00)
including the first K of memory. It is virtually impossible to
change banks in this mode. The 128 monitor is unable to access
$00—$3ff RAM 1 for this very reason. But now this perfectly free
wel l -hidden K of RAM is yours for the taking by simply storing a
$00 at $D506 anywhere from within RAM 1.

Beyond the MMU

ML memory management of the 128 goes well beyond massag
ing $FF00 directly or via its $FF01 -$FF04 write latches to values
at $D501-$d504. However, using these in conjunction wi th the
page pointers ($D507-$D508 and $D509-$D50A) and the RAM
CONFIGURATION register ($D506) wi l l pave the way to tapping
the real potential of the versatile 128.

Why Me?

I have just finished (for the 100th time) new 64/128 assemblers
(my Buddy-Systems) for Pro-Line software so I would like to
think I know a great deal about the ins and outs of programming
the 128. I would also like a Jaguar XKE, a satellite dish and a
cottage by the lake.

The Transactor 61 November 1987: Volume 8, Issue 0 3

Event Maker for the Amiga
by Chris Zamara, Technical Editor

- Simulate mouse and keyboard inputs with CLI commands

One of the first things you'll notice about any computer is how you
have to ask it to do the things you want done. In computerese, that
translates to the 'User Interface". User interfaces come in two
flavours: command-driven, and interactive. The Amiga, being the
do-everything machine that it is, lets you have it both ways.

From the CLI (Command-Line Interface), the command-happy
folks can merrily punch in obscure incantations to set the machine
into action on any mission they wish to assign it. Programs designed
to be used from the CLI are controlled by the arguments typed in
after the program name, making a single command. The arguments
can be names of files or other data for the program to work on, or
certain options and settings that the program looks at to find out
what you expect from it. The built- in CLI commands like Copy,
Format, Echo, Search, etc. can all be used in this manner, and many
other programs get their arguments from the command line in this
way as well. All the Unix-style utilities that programmers are so
fond of are operated via command-line arguments.

The Workbench, of course, is an example of interactive program
operation. Although Workbench uses a Window/Icon/Mouse/
Pointer kind of user-interface, it isn't just for WIMPs, and even Real
Programmers can use it to good effect (although they usually do so
only when no one's looking). Interactive interfaces like Workbench
are typically easier to use than command-driven ones, and can
often be used without relying on reference manuals or your mem
ory. An example of an operation that can be performed via a
command OR interactively (using Workbench) is copying a file. You
can either type "copy filel to file2" from CLI, or drag an icon (if there
is one for that file) from one disk or drawer to another on the
Workbench screen.

Naturally, each approach lends itself better to some applications
than others. A graphics editor, for example, should be interactive,
while a file converter of some kind would probably be more useful
as a command (programs that operate either way are a boon, but
that's not always practical). The command-driven program has a
major advantage over the interactive one, though: it can be operated
from an "Execute", or "script", file. A script file can automate some
process that the user would otherwise have to carry out by typing in
commands one at a time, possibly waiting for operations to com
plete in between. The script file just contains a list of commands as
they would be typed from CLI, and is executed with the CLI Execute
command. An interactive program wil l be of little use in such a
process, since it wil l come up and wait for the user to enter
something, which makes the operation no longer automatic.

A real example? You just used "PageSetter" by Gold Disk, Inc. to
create a lovely report, complete with the obligatory pie-charts and
bar graphs that everyone uses to show off their computer. Now, you
want to print several copies of this report, perhaps advancing the

The Transactor

paper between copies. You want this to happen without your
attention, since it may take a long time. No problem - use the
"PagePrint" program provided on the PageSetter disk to print your
PageSetter file. PagePrint is excellent in that it can be run either
from Workbench, or from the CLI by giving it the name of the
PageSetter file you want to print.

Fine - make a script file to perform the PagePrint commands, with
Echo commands thrown in to advance the page after each copy is
printed. Execute the script file and away you go. Except, oh look -
PagePrint puts up a window and asks you to press RETURN to print
the document, or ESCAPE to abort. So much for your automatic
script file - you'll have to stick around while it runs and press
RETURN every time PagePrint is run to produce the next copy. This
is not to say anything bad about PagePrint - it's just designed as an
interactive program, rather than being completely command
driven. You wil l probably find many programs that you would like
to be able to operate from a script file (even from a Startup-
Sequence), but they require keyboard or mouse input from the user
before they wil l do their job and finish up so that the script file can
continue. What you need in such instances is a way to make the
computer in effect "press its own buttons".

Which, not surprisingly, is why we are here today. We present to you
"Eventmaker", a command-driven program that lets you simulate
interactive input. It works like this: you tell Eventmaker what input
events you wish to take place, such as mouse movements, key
presses and releases, etc., and those events happen within the
Amiga as if the user actually performed them. This can get spooky,
since you can have a program do things by itself as if someone was
operating it, somewhat like a player piano.

How To Use Eventmaker

When you run Eventmaker from the CLI, you give it a list of events
you want it to simulate. The simplest of these is a keypress. For
example, if a program wants you to press "c" to continue, you can get
Eventmaker to do it for you: first run the program (using "run" from
CLI), then get Eventmaker to enter a "c" like this:

Eventmaker c

You could enter several keys like this:

Eventmaker a b e d

Function keys are signified by "F" followed by the function key
number (F l , F2, etc.).

Only unshifted characters may be specified in this way. If SHIFT,
CTRL, ALT, or other keys are to be held while these keys are

62 November 1987: Volume 8, Issue 0 3

pressed, they must be entered as separate events beforehand.
Special keys are entered as follows (they must be in uppercase):

shift/alt etc.:
LSHIFT RSHIFT LALT RALT LAMIGA RAMIGA CTRL CAPS

mouse buttons : function keys :
LMB RMB F1 - F 1 0

other keys:
HELP RETURN UP DOWN LEFT RIGHT
ESC TAB SPACE ENTER DEL BACKSPC

Key releases are signified by using the - A ' character ("caret -,
shift-6) instead of the minus sign. For example:

Eventmaker SHIFT a ASHIFT A a

(press shift, press 'a', release SHIFT, release 'a')

Key releases do not normally have to be specified, unless this is
important to the program receiving the input.

The left and right mouse buttons are handled just like other keys
(with the events LMB and RMB), but mouse movements are handled
differently. Mouse movements are preceded b y ' m : ' (m colon), and
followed by a relative mouse movement in pixels. The mouse
movement is two positive or negative numbers separated by a
comma that specify how many pixels to move the mouse pointer in
the X and Y directions, in that order. The pixels are always in terms
of a hi-res interlaced screen, that is, 640 across by 400 down. The
other mouse event command that is often useful before a mouse
movement is "m:h \ which moves the mouse pointer "home", to the
top left hand corner of the screen. By giving an - m:h ' event followed
by a mouse movement of the form "m:<x>,<y>", you can put the
mouse pointer anywhere you want on the screen with Eventmaker.
Some examples:

Eventmaker m: 100,20 ;move pointer 100 right, 20 down
Eventmaker m: -50,0 ;move pointer 50 left
Eventmaker m:h m:320,200 ;put pointer at centre of screen

Sometimes a delay is needed between events; for example, when
running a program by double-clicking and then trying to operate
the program itself. You need to wait a few seconds while the
program comes up before you can give it input. A delay can be
specified between input events with the syntax ' w : < n > \ where n is
the number of seconds to delay (within a second of accuracy). For
example, here's the command you'd use to double-click on the icon
beneath the mouse pointer, wait three seconds, then send a few
characters to the program just run:

Eventmaker LMB A LMB LMB A LMB w:3 h i , SPACE p r o g r a m .

Two other events are "diskinserted" and "diskremoved", which
signify the obvious. These events are specified with "d:i" and "d:r-

respectively.

To simulate keys on the numeric keypad, use the prefix 'n : ' , for
example, n:0, n:- , etc. This does not apply to the ENTER key, which
is signified by the word ENTER alone.

The Transactor

Don't worry about memorizing all of the above instructions; a
summary is printed out when you run Eventmaker without giving it
any arguments, i.e. just type "Eventmaker" from the CLI.

How It Works

There's nothing tricky about 'Eventmaker'; it just uses a provision
the system has for adding events to the input stream. Al l programs
receive events from the input stream unless they are working at a
very low level, like reading the keyboard matrix directly from the
"keyboard.device", which is unlikely.

Input events are added using the "input.device", one of the many
software entities in the Amiga known as "devices". A command
called "IND.WRITEVENT" is given to the input device, along with
an "InputEvent" structure that specifies what events are to take
place. These events can be the press or release of any key on the
keyboard along with SHIFT, CTRL, either ALT, or either "Amiga"
command key; any mouse movement (specified in relative X and Y
units); or the press or release of either mouse button.

The program opens the "input.device", then goes through the list of
arguments supplied by the user, one at a time. Each argument is
used to determine how to fill in an "InputEvent" structure, which is
linked in to the I/O request structure sent to the input device. The
WRITEVENT command is then put into the I/O request structure
and given to the Input Device via the DoIOO function. The input
device then enters this event into the input stream for us, and the
program currently receiving input gets the event. Finally, the input
device is closed and the program exits. It's all done in about 260
lines of C code, and the hardest part is parsing the user's arguments
and turning them into InputEvents in the format that the input
device wants them.

Things to do with Eventmaker

Being able to automate your script files with interactive programs
will probably be a great help to you, but you can go further than
that. Why not make a script file to:

• Create a picture with a graphics program
• Open the Workbench "Demos" drawer and run all the programs
• Run your word processor and set the options as you like them
• Start a terminal program and get it to automatically log you onto

an online service

So, even if you didn't have a crying need for this program before,
you can still have fun with it.

P.S.

You can use Eventmaker to find the 'Easter eggs* in Workbench as
described in the bits column without playing a "solitaire game of
Twister'. A word of warning, though: this wil l give you the most
deeply buried message, the one you should only see if you're not
offended by rude words. Just make your CLI window shorter and
move it to the bottom of the Workbench screen to display the screen
title bar, then use Eventmaker like this:

Eventmaker m:h m:600,22 LMB A L M B m:0,-10
LSHIFT LALT RSHIFT RALT F1 d:r LMB d:i

November 1987: Volume 8, Issue 0 3 63

/ * Eventmaker MakeEvent (string)
• Chris Zamara, 1987 /• Fill in InputEvent structure and give WRITEVENT command to input device •/
* char • string;
• Puts the specified character into the input stream as if it were {
• typed from the keyboard. Useful if you are running a program from a struct InputEvent MylnputEvent;
• script that wants you to press return or something to start.
• idReq->io_Command = INDJVRITEEVENT;
• See the "docs" array below for complete specs. idReq->io_Flags = 0;

•/ idReq->io_Length = sizeof(struct InputEvent);
idReq->io_Data = (APTR)&MylnputEvent;

include <exec/devices.h>
#include <devices/inputevent.h> My InputE vent. ie.NextE vent = NULL;
#include <devices/input.h> MylnputEvent.ie_TimeStamp.tv_secs = 0;

MylnputEvent.ie_TimeStamp.tv_micro = 0;
char »docs[] = { MylnputEvent.ie_X = 0;

'Eventmaker accepts any number of arguments,", MylnputEvent.ie.Y = 0;
'each specifying an input event. The syntax for an event is:\n",
"<key> - key down", if (SetupEvent(string, SMylnputEvent))
"*<key> - key up", DolO(idReq);
"n:<key> - numeric keypad key', }
*m:<x>,<y> - relative mouse movement",
"m:h - mouse home (to 0,0)", parseXY (string, x, y)
"d:i - disk inserted", /• get x and y value from user's input and put into supplied args •/
"d:r - disk removed", char «string;
"w:<n> - wait n seconds\n", WORD .x, .y;
"keys are entered as single unshifted characters, except:\n", {

"shift/alt etc. : LSHIFT RSHIFT LALT RALT LAMIGA RAMIGA CTRL CAPS' int yarg;
"mouse buttons : LMB RMB",
•function keys :F1-F10", •x = atoi(string);
"other keys : HELP RETURN UP DOWN LEFT RIGHT", if ((yarg = findchar(string,','))! = -1)

ESC TAB SPACE ENTER DEL BACKSPC",
\-

»y = atoi(string + yarg + 1);
i

/•
struct lOStdReq .idReq = NULL, .CreateStdlO(); /• for I/O requests •/

l

struct Port'idReqPort = NULL, »CreatePort(); SetupEvent (eventstring, event)
long idError = 1, OpenDevice(); /»fill in supplied InputEvent structure based on supplied event string •/

char «eventstring;
main (argc, argv) struct InputEvent »event;
int argc; {
char *»argv; UWORD class, code, qual, mqual, nqual;
{ UWORD key_up_indicator = 0;
int i; static UWORD qualifier = 0;

if (argc < 2) code = qual = mqual = nqual = 0;
{ /• print instructions */ class = IECLASS.RAWKEY;

for (i = 0; i < sizeof(docs) / sizeof(char»); i + +)
puts(docs[i]); if (eventstring[0] = = '*') /• key up indicator - skip over •/

exit(0); {
} key_up.indicator = IECODEJJP.PREFIX;
if (OpenlnputDevice() = = 0) eventstring + +;

for (i = 1; i < argc; i + +) }
MakeEvent(argv[i]); if (eventstring[1] ! = ':') /» normal key event •/

else code = findkeycode(eventstring, &qual, &class);
puts("Something went wrong. Sorry, can't help you."); else /* disk, keypad or wait •/

CloselnputDeviceQ;
}

switch (eventstring[0])
/

case 'n': /• numeric keypad •/
OpenlnputDevice() nqual = IEQUALIFIER.NUMERICPAD;
/• create port and I/O request block, open input device •/ code = findkeycode(eventstring, &qual, &class);
{ break;
if ((idReqPort = CreatePort("idReqPort", 0L)) = = NULL case'm': /• mouse movement •/

|| (idReq = CreateStdlO(idReqPort)) = = NULL mqual = IEQUALIFIER.RELATIVEMOUSE;
II (idError = OpenDevice("input.device", 0L, idReq, 0L))! = NULL code = IECODE.NOBUTTON;

) class = IECLASS.RAWMOUSE;
return 1; if (eventstring[2] = = 'h') /• mouse home (top left) •/

return 0; event->ie_X = event->ie_Y = -1024;
} else

parseXY(eventstring + 2, &event->ie_X, &event->ie_Y);
CloselnputDeviceQ break;
{ case'd': /• disk event •/
if (idError = = 0) CloseDevice(idReq); if (eventstring[2] = = 'i')
if (idReqPort) DeletePort(idReqPort); class = IECLASS.DISKINSERTED;
if (idReq) DeleteStdlO(idReq); else if (eventstring[2] = = V)

} class = IECLASS_DISKREMOVED;
break;

The Transactor 6 4 November 1987: Volume 8, Issue 0 3

case 'w': /• wait n seconds •/
Delay((ULONG)(atoi(eventstring + 2) • 50));
return 0;

}
if (class = = IECLASS.RAWKEY && code > OxFF)

{
printf("Bad event specification: %s\n", eventstring);
return 0;

}
if (class = = IECLASS.RAWKEY)

if (key_up_indicator)
qualifier &= ®qual;

else
qualifier |= qual;

event->ie_Class = class;
event->ie_Code = code | key_up_indicator;
event->ie_Qualifier = qualifier | mqual | nqual;

return 1;

findkeycode (key, qualifier, class)
/• given a single key event, find its code and qualifier •/
char »key;
UWORD .qualifier, .class;
{
UWORD code;
int tablejndex;
char »kstring =

" 1234567890- = \@@@qwertyuiop[]@@@@asdfghjkl;
static char »keytable1 [] = {

•HELP', "RETURN", "UP", "DOWN", "LEFT", "RIGHT",
"ESC", "TAB", "SPACE", "ENTER", "DEL", "BACKSPC
NULL};

static UWORD codejablel [] = {
0x5f, 0x44, 0x4c, 0x4d, 0x4f, 0x4e,
0x45,0x42,0x40,0x43,0x46,0x41 };

static char •keytable2[] = {
•LSHIFT", "RSHIFT", "LALT", "RAIT,
"LAMIGA", "RAMIGA", "CTRL", "CAPS",
NULL};

static UWORD code_table2[] = {
0x60, 0x61, 0x64, 0x65, 0x66, 0x67, 0x63, 0x62 };

static UWORD qualifier_table[] = {
IEQUALIFIERJ-SHIFT, IEQUALIFIER_RSHIFT,
IEQUALIFIER_LALT, IEQUALIFIER_RALT,
IEQUALIFIERJ.COMMAND, IEQUALIFIER.RCOMMAND,
IEQUALIFIER.CONTROL, IEQUALIFIER.CAPSLOCK};

static UWORD keypad_codes[] = {
0x4a, 0x3c, 0x00, OxOf, 0x1 d, 0x1 e, 0x1 f,
0x2d, 0x2e, 0x2f, 0x3d, 0x3e, 0x3f };

•qualifier = 0;
•class = IECLASS.RAWKEY;

if (strlen(key) = = 1)
code = findchar(kstring, »key); /• single-char key

else if ((tablejndex = findstring(keytable1, key))>= 0)
code = codejablel [tablejndex]; /• other key

else if ((tablejndex = findstring(keytable2, key))>= 0)
{ /• qualifier-type key •/

code = codejable2[table_index];
•qualifier = qualifier_table[tablejndex];

code = IEC0DE_RBUTT0N;
•qualifier = lEQUALIFIER.RBUTTON;
•class = IECLASS.RAWMOUSE;

}
else if (key[0] = = 'n ' && key[1] = = ': ' /• numeric keypad key •/

&& key[2] > = ' - ' && key[2] < = '9')
code = keypad_codes[key[2] - ' - '] ;

else

code = - 1 ; /• invalid event specifier •/

return code;

findchar (string, chr)
/• find a character in a string and return its position •/
char 'String;
char chr;

int pos;

for (pos = 0; »string! = chr && «string; pos + +)
string + + ;

return ("String ? pos; -1);

}

findstring (array, string)
/• find a string in an array and return its position •/
char "array, 'String;

{
int pos = 0;

while (array[pos] && strcmp(array[pos], string))
pos+ +;

return (array(pos)! = NULL ? pos: -1);

THE 1 SHOW

C o m m o d o r e
Saturday & Sunday
October 3 & 4,1987

10 a.m.-6 p.m.

THE DISNEYLAND HOTEL
ANAHEIM, CALIFORNIA

else if (»key = = 'F ' && strlen(key) < = 3)
code = 0x4f + atoi(key + 1); /• function key

elseif(strcmp("LMB",key) = = 0)
{ /• left mouse button •/

code = IEC0DE.LBUTT0N;
•qualifier = IEQUALIFIERJ.EFTBUTT0N;
•class = IECLASS.RAWMOUSE;

I
else if (strcmp("RMB", key) = = 0)
{ /• right mouse button •/

I EXHIBITS, EVENTS
AND DOOR PRIZES

INATIONALL Y KNOWN
COMMODORE
SPEAKERS

I SHOW SPECIALS
AND DISCOUNTS

I SEE THE LATEST
INNOVATIONS IN
HARDWARE AND
SOFTWARE
TECHNOLOGY

The Commodore Show
Is the only West Coast
exhibition and confer
ence focusing exclu
sively on the AMIGA,
Commodore 128 and
64, and PC 10 market
place. Enjoy the Magi
cal Kingdom of Disney
along with thousands
of Commodore Users.

COMMODORE SHOW

ADMISSION s10
DISCOUNT ON DISNEYLAND TICKETS

AVAILABLE

For More Information or to Reserve Exhibit Space, Contact aE RK PRODUCTIONS
^ P.O. BOX 18906, SAN JOSE, CA 95158
L (408) 978-7927-800-722-7927-IN CA 800-252-7927

The Transactor 6 5 November 1987: Volume 8, Issue 0 3

A New ECHO:
An AmigaDOS Command Replacement

Neal Bridges, Welland, Ontario

. . .I've discovered the joys of programming in 68000 assembly language.. .

I moved from a C64 environment to an Amiga only a couple of
months ago, and it's only in the last couple of weeks that I've
discovered the joys of programming in 68000 assembly lan
guage. As my first project, rather than creating something totally
new, I decided to improve on something already in existence.
What follows is a replacement for the AmigaDos command
"ECHO". This new ECHO command is shorter, faster, and better,
while still retaining all the features of the old ECHO command. It
works under both Release 1.1 and Release 1.2 of the Kickstart/
Workbench disks.

Three file listings follow this article.

Listing 1 ("Echo.asm") is the Commodore Macro Assembler
source listing of the new command.

Listing 2 ("Echo.gen") is an AmigaBasic program generator that
wi l l generate an executable command called "ECHO" on your
AmigaBasic default directory. This is for those of you lacking the
Assembler. Each DATA line ends with a checksum, so the READ
loop at the top can tell you what line an error is found in.

Listing 3 ("DateChange") is an example of a command file using
the new ECHO.

How To Use the New ECHO

To make effective use of the new ECHO, I recommend that you
directly replace the old ECHO command (in the c: directory of
your CLI/Workbench disk) wi th the new o n e . . . all your exist
ing command files wi l l function perfectly, albeit slightly faster.

Usage: ECHO [-n] < s t r i n g >

The new ECHO has three new features. In the examples that
follow, 'ECHO' represents the new ECHO command file.

1) If the characters ' - n ' precede the <str ing> argument, a
newline character wi l l not be printed after the <st r ing>. For
example, within a command sequence,

E C H O - n Bro
E C H O ken

would display:
Broken

2) Quotes around the <s t r ing> are normally unnecessary and
may be left out. Thus,

ECHO "Hello World?"

wi l l display the same thing as

E C H O Hel lo Wor ld?

The only useful purpose they can serve is to indicate leading
blanks, as in

E C H O " This is 3 spaces over."

or to visually delimit trailing blanks (for easier editing), as in

E C H O - n "The current date is: "

Also,

ECHO ""

prints a blank line.

Apart from this, quotes are ignored by the new ECHO com
mand.
3) Within the <st r ing>, any character preceded by a ' A ' is
converted into its equivalent CONTROL character. This feature
makes it possible to send ANSI codes to the console and printer.
For example,

E C H O - n A l

wi l l generate and display an ASCII 12 (Formfeed), effectively
clearing the screen, and

ECHO >pr t : A [[1 mHel lo There A [[0m

wi l l print "Hello There" in bold type on the printer (A [results in
an ESCape character).

The new ECHO handles the ' * ' character in exactly the same

manner as the old ECHO.

66 November 1987: Volume 8, Issue 0 3 The Transactor

About The Program

The file "ECHO.asm", when assembled and l inked, comes to 292
bytes. This is 268 bytes smaller than the existing command. I
happen to like short code. My first machine (way back in '82)
was a 1K ZX81, so 1 learned to squeeze my programs right from
the start. It's healthy mental exercise.

I have done my best to document the assembler listing fully. In
terms of function, it first opens the DOS library. Then, if the
argument was '?', it prints the template (': ') and gets an
argument string from the current input device. It then checks
the beginning of the argument string for a ' - n ' . If found, a flag is
set indicating to the output section that no End-of -L ine charac
ter is to be transmitted after the output string. Then the main
loop copies the rest of the argument string to the output buffer,
handling quotes and the special characters ('*' and ' A ') . It then
calls the Write routine in the DOS library to send the result out to
the current output device, with or without a linefeed, as indi
cated by the End-of -L ine flag. Afterwards, the DOS library is
closed, and control is returned to the CLI.

The routine is position independent. I haven't tested it, but this
should mean that it loads and executes slightly faster than a
similar relocatable routine would because (a) registers are faster
than memory, and (b) the relocating loader in ROM doesn't have
to relocate anything when it reads the command from the disk. I
ran a rough test which showed that the new ECHO command is
approximately 60% faster when running it from disk than the
old ECHO. Being position independent makes it smaller, as well.
Machine instructions that operate solely on internal registers
take up less bytes than those that reference immediate values
and memory addresses.

One interesting note: Rather than create a buffer to hold the
output string, I re-used the argument line buffer. Since the
argument line isn't referenced elsewhere after this routine is
through with it, there's no problem. This only works because the
length of the output string that this routine produces is always
less than or equal to the length of the original argument string. If
it were possible for the output string to be longer than the
argument string, disaster would result because the output string
would write over input characters that hadn't been scanned yet.

Another note: Although this new ECHO command does all the
things the old one does, the inverse is not true. That is, if you
make use of the improved features in your command files, you
must have the new ECHO command in your c: directory when
you EXECUTE those files. If you come up with a useful com
mand file using the new ECHO, and you want to distribute it,
don't forget to distribute the new ECHO command with it, or
you'll get complaints.

Listing 1: Source Code

Neal Bridges,
4 Crescent Drive,
Welland, Ontario,
Canada, L3B2W5.
Phone: (416)-734-7789.

- This is a CLI command. It's meant to replace the existing
Echo command. Although it has more features, it is upwardly compatible
with the existing command. It's also quite a bit shorter & faster.
To use it effectively, I recommend directly substituting
it for the existing "Echo" command in the c: directory of your
CLIA/Vorkbench disk.

- Usage: Echo [-n] <string>
Notes: If you include the '-of, no linefeed will be printed at the

end of the line. The 'n ' must be lowercase.

- Special features within <string>: A '*' followed by a character
will be converted into a CTRL character. For example, 1 becomes
ASCI112, (Formfeed), "g becomes ASCII 7 (Bell), Aj becomes
ASCI110 (Linefeed), A[becomes ASCII 27 (Esc), etc.

Example: Echo -n A l
clears the screen.
Example: Echo *([2mHello There!
switches to text colour number two (normally black) & displays
'Hello There!' in that colour.

- Quotes C) around the argument <string> are unnecessary
unless you wish to have leading spaces in your string,
for example: Echo' Hello World!'

As described in the AmigaDos Manual:
If for some reason you wish to print a quote character, you may do so
by preceeding it with a '• ' .
Example: Echo •"Hello World.• "
displays: "Hello World"

- If you wish to print a '• ' , use two of them.
Example: Echo Input*'Output 2 34
displays: Input'Output 2 34

- 'Echo' by itself does nothing.
- 'Echo""' prints a blank line.

- Permission to copy but not to sell.

;— The following register equates
; save memory & increase the speed of the program.

;— Register Equate: — Used for:
bufptr equr a2 ;Output buffer ptr.
argpstr equr a3 ;Storage place for ptr

; to start of argument line,
argptr equra5 ;Rr to start of

; argument line,
char equr dO ;Char being read in

; from argument line.
BitFlags equr d1 ;Bit 0 is used to signal type of line termination.

;Bit 1 is used for the quote
;toggle flag, a thing incorporated to kludge
ithe strange parsing of the existing Echo command.

Specflag equr d2 ; Flag for use with special
; symbols'• '&"".

count equr d3 ; Len of output line,
arglen equrd4 ;Len of argument line.
Dosbase equrd5 ;Dos library pointer,
output equr d7 ;CLI outhandle.

;- "Echo.asm"

; A new ECHO command by Neal Bridges, 02/87.

; My address:

;— Symbolic equates:
AbsExecBase equ $4 ;Locof ptr to the

; Exec library.
;Line Feed value. LF equ 10

CTRLmask equ %00011111 ;Mask to make CTRL chars.

The Transactor 6 7 November 1987: Volume 8, Issue 0 3

xlib MACRO ; Macro to save my feeble fingers,
xref _LVO\1
ENDM

call MACRO ;Another macro to save typing,
jsr _LV0\1(a6)
ENDM

xlib Close ;These are Library routines referenced
xlib OpenLibrary ;externally by this program.
xlib CloseLibrary
xlib Output
xlib Write
xlib Input
xlib Read

;— Initial setup:
.main move.l aO.argptr

move.l aO.argpstr
move.l dO.arglen
lea dosname(pc),a1
clr dO

move.l AbsExecBase,a6
call OpenLibrary
move.l dO.dosbase
beq close

;— Get CLI outhandle:
getout move.l dosbase,a6

call Output
move.l dO.output

Remember ptr to argument line.
Make copy of it for reference.
Remember len of argument line.
-Specify name 'dos.library'.
Specify any version (0 means
any version is OK).
Then using Exec library,
Open Dos library.
Remember dosbase ptr.
Check tor error (dO = 0 means
"Oh dear, it didn't open').

Using Dos library,
get CLI outhandle,
& then remember it.

;— Check the existence of an argument line:
checklen cmpi.b #1 .arglen ; If no argument chars,

We close ; exit program.

;— Check for argument ='?' + LF:
checkqm cmpi.w #'?'«256 + LF.(argptr) ; If the argument is'?' only,

bne.s strtscan ; show template & read argument
line from console input device.
(The equation results in a word
equalling a'?' char followed by a LF).

template(pc),a2 ;-Specify ptr to template string in
a2,d2 ; d2(viaa2);
output,d1 ; Specify outhandle in d1;

;— Display template:
getline lea

move.l
move.l
move.l
move.l

#endtemp-template,d3 ;Specify number of chars in d3;
dosbase,a6

call Write

;— Get argument line from input device:
call Input

move.l d0,d1
move.l argptr,d2
move.l #255,d3
call Read
move.l dO.arglen
bra.s checklen

; then using Dos library,
; show the template.

Still using Dos library, get the
current inhandle.

-Specify inhandle in d1;
Specify argument buffer ptr in d2;
Specify max len in d3;
still using Dos library, Read line.
Set arglen to the actual len of the
line read & go back up to check
line len again.

;— Start the argument line scanning process
strtscan clr.b BitFlags

move.l argptr.bufptr

;— Check for ' - n ' at start of argument line:
cmpi.w #'-n',(argptr) +
bne.s fixptr
moveq #1,BitFlags

Are first 2 chars '-n'?
If YES,
set Bit 0 of BitFlags to 1,
which means
"Don't send an EOL character
after printing the line".

;— Find first non-blank char:
findspc cmpi.b #' ',(argptr) +

ble.s findspc
subq.l #1 .argptr
bras setup

I Loop until nxt non-blank char found.

; When found, fix ptr &
; go to main scan loop.

;— Reset ptr to start of line if there wasn't a ' - n ' :
fixptr

setup

move.l argpstr.argptr

clr I
clr.b

count
SpecFlag

;— Make new output line from argument line
scan move.b (argptr) + ,char

cmpi.b #LF,char
beq exit

Clear end-of-lme flag and quote
toggle flag.
Set bufptr to start of
output buffer. (Since the argument line
isn't needed twice, I'm using it
for the output buffer as
well, & therefore setting
bufptr to argptr achieves my purpose.)

Check special chars flag:
tst.b SpecFlag
bne.s doflag

;— Check for quote:
cmpi.b #''',char
bne.s chkspcl
bchg #1,BitFlags
bra.s scan

;— Check for special chars (A and •):
chkspcl cmpi.b #v,char

bne.s chkother
btst #1,BitFlags
beq.s chkother
moveq #1,SpecFlag

chkother cmpi.b #M',char
bne.s ifflag
moveq #2,SpecFlag

ifflag tst.b SpecFlag

bne.s scan

;— Put char in buffer:
putinbuf move.b char.(bufptr) +

addq.b #1,count
bras scan

; - - Handle special chars:
doflag cmpi.b #1,SpecFlag

beq.s dfexit
andi.b #CTRLmask,dO

dfexit clr.b SpecFlag

bra.s putinbuf

Reset argument line ptr
to start of line.
Clear output-chars count.
Clear special chars flag.

Get first argument char (after
' -n ' , if there was a ' -n ' j .
Is it End-Of-Line char?
If YES, then there's no more
argument line, & it's
time to show output.

Check special chars flag.
If last char was special
one (either • orA), go to dotlag
to handle it.

If received char is quote,
avoid entirely.
NewEcho doesn't do quotes without
' • ' in front of them.

Is i t ' . '?

If YES, was there a preceding '•'?
If NO, display it as a '• '.
If YES, set flag to 1.
Is i t / A / ?

If YES, set flag to 2.
If SpecFlag is something other than 0
(meaning special char
was received),
go back & get next char.

Put output char in output
buffer.
Increment output-chars count by 1.
Go up & get a new argument
line char.

If flag was set to 1 by last
char (meaning '• '),
this char is meant to be showed,
& needs no altering.

If it's 2 (meaning '*'),
knock this char down
to its equivalent CTRL char.
In either case, clear special
chars flag,
& go up & store char in
output buffer.

The Transactor 6 8 November 1987: Volume 8, Issue 0 3

;— After looking at all argument chars:
exit bclr.b #1,Bitflags

tst.b Bitflags
bne.s notf

move.b #LF,(bufptr)
addq.b #1,count

nolf move.l argpstr,d2
move.l output.dl
move.l count,d3
call Write

;— Close opened libraries:
close move.l dosbase.al

move.l AbsExecBase.a6
call CloseLibrary

closel rts

Clear quotes toggle flag.
Check line termination type flag.
If it's 1, don't put a LF at end
of output string.
If it's 0, put a linefeed at end.
& increment count to handle it.

-Specify start of output line in d2;
Specify outhandle in d1;
Specify # of chars to write in d3;
show the output.

-Specify Dos library in a1;
then using Exec library,
close Dos library.
Return control to CLI.

;— Dos Library name:
dosname dc.b 'dos.library',0 name of Dos library
;— Template string,
template dc.b ': '
endtemp

end

Listing 2: Generates load file Echo'

REM 'Echo.gen '

REM AmigaBasic File Generator for "Echo".

CLS

COLOR 2:pr int" * * * ' ;
COLOR 3:PRINT "Echo Program Generator"
COLOR 2:pr int" * * * ";
COLOR 3:PRINT "Generated By MakeGen (Neal Bridges,

02/87)."
COLOR 1 PRINT: PRINT "Please Wait, creating Echo. . ."
OPEN "Echo" FOR OUTPUT AS 1
PRINT
l = 95 : f = 0
WHILE f = 0

Sum = 0: l = l + 5
FOR i = 1 TO 8

READ x: IF x<>256 THEN
IF x > = 0 A N D x<256 THEN PRINT #1 ,CHR$(x);
Sum = (Sum+ x) AND 255

END IF
NEXT :READ x:IF x<0 THEN READ x:f = 1
I F S u m O x THEN

PRINT "Error in Line";!
CLOSE 1: KILL "Echo": END

END IF
WEND
Done: CLOSE 1 PRINT "Echo Created."
END

100 DATA 0, 0, 3, 243, 0, 0, 0, 0 , 2 4 6
105 DATA 0, 0, 0, 2, 0, 0, 0, 0, 2
110 DATA 0, 0, 0, 1 , 0, 0, 0, 60, 61
115 DATA 0, 0, 0, 0, 0, 0, 3, 233, 236
120 DATA 0, 0, 0, 60, 42, 72, 38, 72, 28
125 DATA 40, 0, 67, 250, 0 ,218, 66, 6 4 , 1 9 3

130 DATA
135 DATA
140 DATA
145 DATA
150 DATA
155 DATA
160 DATA
165 DATA
170 DATA
175 DATA
180 DATA
185 DATA
190 DATA
195 DATA
200 DATA
205 DATA
210 DATA
215 DATA
220 DATA
225 DATA
230 DATA
235 DATA
240 DATA
245 DATA
250 DATA
255 DATA
260 DATA
265 DATA
270 DATA
275 DATA
280 DATA
285 DATA

44, 120,
42, 0,
78, 174,

0, 1,
63, 10,
36, 10,

0, 2,
78, 174,
38, 60,

255 ,214 ,
36, 77,

114, 1,
83, 141 ,
66,

103,
12,

0,
102,
116,
116,

82,
103,

96, 236
102, 6
36, 11

255, 208
78, 174

115, 46
121,

0,
0,

245

0,
103,
255,
111,
102,

34,
44,

255,
0,

40,
12,
12,
96,
16,

0,
0,

96,
8.

12,
74,
96,

2,
8.

20,
34,
34,

254,
108,

58,
3.
3,

4, 78,174,
0, 0, 190,

196, 46, 0,
0, 0 ,174 ,

42, 69 ,250 ,
7, 38, 60,

69, 78 ,174 ,
202, 34, 0,

0, 0 ,255,
0, 96 ,200 ,

93, 45 ,110 ,
29, 0, 32,

2, 42, 75,
29, 12, 0,
64, 74,
34, 102,

230, 12,
1, 0,
0, 0, 94,
2, 102,204,

198, 12, 2,
0, 0, 3 1 ,

129, 0, 1,
188, 0, 10,

7, 38, 3,
69, 44 ,120 ,
98, 78,117,

105, 98 ,114 ,
32, 0, 0,

233, 0, 0,
242, 256, 256,

254, 104, 10
44, 69, 192
12, 4 , 2 5 3
12, 8 5 , 1 2 7

0, 188 ,212
0, 0 , 1 8 5

255 ,208 , 62
36, 13, 24
78 ,174 , 93
66, 1,104

102, 12 ,231
111,250, 37

66, 131, 124
0, 10 ,135

44, 133
65, 227
42, 125

2, 225
2, 71

20, 192, 200
0, 1,138

66, 2 , 208
74, 1, 33
82, 3, 155
78, 174 ,125

0, 4 , 2 2 2
100, 111,242

97 ,114 , 29
3, 242, 200
0, 0 ,236

256 ,256 , - 1

102,
8,
0,

103,
102,

Listing 3: A Sample Command File

"DateChange"
A Command File by Neal Bridges, 02/87.
A Short Routine to Change the System Date.
Demonstration of new ECHO command.

FAILAT 25 ; prevent premature exit from sequence
; print blank line (Aj), print 'The current. . .', no newline
ECHO - n A j"The current date i s '
DATE ; print date

; print blank line, print 'Enter t he . . / , change to colour #2
ECHO - n Aj"Enter the correct date: " A [[2m
; read date from keyboard
DATE >nil: ?

change to colour 0, go up 3 lines, over 20 characters,
and erase to End of Screen

ECHO - n A [[0m A [[3A A [[20C A [[J
DATE ; print new date where old date was
ECHO"" ; print blank line

The Transactor 69 November 1987: Volume 8, Issue 0 3

Programmed Cursor Jim Butterfield
on the Amiga? Toronto, Ontario

.. .inside quotation marks, things work a little differently. . .

Slip your Amiga into CLI, and type the following command:

ECHO HOT**DOG

The computer wil l obediently echo HOT**DOG for you. You did
know that ECHO'S argument doesn't need those quotes, didn't you?
You use quotes most of the time because what you want printed
contains otherwise forbidden characters, mostly spaces.

That seems reasonable. Let's be more "conventional" and type:

ECHO -HOT. .DOG -

Same thing, except for putting quote marks around the argument.
But wa i t . . . one of the asterisks has disappeared! What's happening
here?

It turns out that when you're inside quotation marks, things work a
little differently. Especially asterisks: they work a lot differently.
Without the quotation marks, asterisks are just like any other
character. The quotation marks generate a special type of format.
It's like the "quote mode" or "programmed cursor" you may have
seen on earlier Commodore machines.

Special Treatment

When you type almost any CLI argument within quotation marks,
the asterisk becomes something like an escape-type character. You
might have seen something like this in C, or in programs such as
PageSetter, except that a more usual character is the Backslash. It
says: the next character to follow is not a regular character; instead,
it's a special signal. Exception: when you give the character twice,
the second character is accepted as typed. So the two asterisks
collapse into one. If you like, you may translate the two characters
as "Here's a special character. . . I just mean an ordinary asterisk".

The asterisk is a remnant of an Amiga system language called
BCPL. This language was a forerunner of the C language, and you'll
still find bits of it within the Amiga if you dig deep enough. Original
BCPL had a considerable number of special codes generated by an
asterisk; on the Amiga only four of them remain:

* * - generates a single asterisk;
** - generates quotation marks;
*n - generates a newline (the "linefeed")
*e - generates an ASCII escape character.

We've already tried the asterisk. You might try for some interesting
effect with the next two by typing:

ECHO "PRESS . -RETURN* 'WHEN READY-
ECHO "LINE 1 *nLINE 2"

(Didn't know you could print two lines with one ECHO statement,
did you?)

But the serious one is the *e sequence, which generates the ESC
escape character. You might recognize this as CHR$(27) or hexade
cimal IB, but if you don't, no matter. It often has effects similar to
those produced by pressing the ESC key. You probably know that
pressing ESC followed by the "c" key clears the CLI screen. It also
gets you out of certain annoying problems, such as a peculiar
character set. Well then: If *e in quotes matches the ESC key, try
this:

ECHO , *ec"

You were not surprised to see the screen clear, were you?

You might perhaps wonder what value this has. It's easier to press
two keys, ESC and "c-, than to type in the whole line shown above.
But ECHO is often used in batch files (which I like to call EXECUTE
files, because you usually invoke them by means of the EXECUTE
command). So you can have a command sequence - not a program,
just a command sequence - clear the screen. It can also do other
things for you, which we'll get to in a moment.

File Nonsense

By the way, the use of the asterisk is not restricted to the ECHO
command. Anything that you put in quotation marks uses asterisk-
escape capabilities. So if you want to name a file SNOW*JOB you
may either call it exactly t h a t . . . or "SNOW**JOB'. Remember: you
only need to double the asterisk if you give the name within quotes.

You can also slip quotation marks into the file name itself. If you
want to call a file 'CAT - - not CAT, but "CAT", with the quotes as part
of the name - you may do so by calling it -*'CAT*". It wil l make it
hard for others to reference the file by name. It will make it hard for
YOU to reference the file by name. You really don't want to do this,
except to prove that it can be done.

I'm happy to report that the DOS rejects fancier file names, the ones
you'll try to create using the newline and escape sequences. After
you think about it, you'll be glad it did.

TheCSI

If you generate the ESC character (and we know how to do that,
don't we?) you can follow it with a left-square-bracket character
("[•) and the combination is called a CSI. CSI stands for Control

The Transactor 7 0 November 1987: Volume 8, Issue 0 3

Sequence Introducer, which means that something special wil l
follow. If you get into the machine, you can also create a CSI as a
single character, CHR$(155) or hex 9B. (

The CSI seems like a new form of ESCAPE, but it has quite a
different character (no pun intended). The ESC is followed by one
and only one action character; CSI may be followed by numeric data
(which is noted) but terminates only when you reach the command
character. The command character is usually alphabetic, and be
careful: upper case versus lower case is significant here.

This business of number followed by command is rather like the
system used in ED, the screen editor, for "extended" commands.
Those are the commands you get by pressing the ESC key. Their
system, as with CSI is: type the number first, and then the command
letter; the command wil l be executed the appropriate number of
times. CSI has its own commands, of course, not the ones that ED
uses.

For example, the CSI command for "linefeed" is "E " (note the upper
case). So you can command:

ECHO "*e[6EBANANA"

You'll be pleased to see the computer skip six lines and then print
BANANA.

Just checking that you follow the syntax. In the above example, we
MUST be in quotation marks; the asterisk indicates a special
character follows; the e signals that this is an ESC sequence; the [
says, "here comes a special command"; the 6 is read as the number
of times to perform the following operation; the E is the command
for linefeed, so we do six linefeeds; and, as I think Freud said, the
BANANA is just a BANANA.

If you've coped with that one, I'll tell you that F (capitals again) is the
command for NEGATIVE linefeed. So you might try:

ECHO "*e[5FHELLO"

You'll see something you might have considered impossible; the
cursor going UP on the CLI screen! If you do much of this, you'll find
yourself typing over old screen text, which is not fun. . . you still
don't have true screen editing as you may know from earlier
Commodore machines.

I won't go through all the curious commands that can be invoked
with CSI. Check The AmigaDOS Manual (Bantam Books); within it,
look at the appendix in The Developer's Manual. You'll find lots of
commands to play with and make the CLI screen do strange things.
There's one in particular I'd like to show you: command m (lower
case), Set Graphic Rendition.

Graphic Rendition

The command, "CSI. . numeric.. m" changes the way things are
shown on the CLI screen. The change is moderately permanent
within the open CLI, so I try to change things back at the end of
each line. So. . . you'll see two sequences of *e[within the quotes,
one to produce the effect and one to get us back.

I like the "30" codes the best. They run from 30 to 33, and change

The Transactor

the printing colour (30 is invisible, so is of less use). Try these:

ECHO "*e[32m DARK HORSE *e[31m"
ECHO - .e[33m RED ROVERS *e[31m"

You can change colours several times on a line, if you wish.

Now for the "40" codes. They change background colour as you
print:

ECHO - .e[41m INVISIBLE *e [40m'
ECHO "*e[42m BLACK BAK *e[40m"
ECHO •.e[43m RED BACKS .e [40m"

You won't see the output from the first line very well, since it wil l be
printed white on white. Note that the background colour only is
changed here.

There are a few interesting numbers in the 0 to 7 range. Try:

ECHO "*e[1m Boldface! .e [0m"
ECHO ".e[3m Italics! *e[0m"
ECHO •*e[4m Underline *e [0m -

ECHO "*e[7m Reversed! *e[0m"

Note that code 0 brings the font back to normal.

A final note: you can use several of these codes, separated by
semicolons. So as a last grand combination, try:

ECHO "*e[32;43mRead *e[3;4mThe Transactor
*e[0;32;43m regularly!*e[Om"

You may have spotted that the sequence *e[0m restores everything
to normal. When we used it in the middle of the last long line in
order to cancel the italics and underline features, we had to reinstate
the colours we were using.

Printer Footnote

The same CSI codes that work with the screen wil l often work with
the printer. I often use ECHO with redirection in order to jot a note
on the printer. Thus:

ECHO >PRT: " August 15/87 Listing"

This will spit out the correct message to the printer.

But it's interesting to see that many of the printer codes are similar to
those we have used to the screen. The whole list of printer control
codes may be found in the massive Amiga ROM Kernal Manual; it
has also been partially reprinted in numerous places. A simple
example wil l do here: if your printer has an italics font, type:

ECHO>PRT: "*e[3m Italics! *e[0m"

The same code that did the job to the screen wil l do it to the printer.

Conclusion

You can certainly pep up your Startup-Sequence file with a bit of
colour and other special effects. And you might even have a better
idea of some of the Amiga's marvellous inner space effects.

71 November 1987: Volume 8, Issue Q3

Adding Analog RGB Capability
to the 1902 Monitor

Larry Phillips
Vancouver, BC

.. .analog RGB mode was present only on very early 1902 monitors...

When I first purchased my Amiga, I thought that I would be able to
use a 1902 for the monitor, as it has a switch position for RGB
analog. This feeling was reinforced by the fact that the Amiga's 1080
monitor looked identical to the 1902 in terms of the case, controls,
and switches. Alas, it was not to be, for in Commodore's infinite
wisdom, and probably at the insistence of the marketing types, the
analog RGB mode was present only on very early 1902 monitors.
Later versions had some components missing that crippled the
analog RGB circuitry. This article describes how to add the compo
nents necessary. This modification wil l work on the 1902 only, and
NOT on the 1902A.

Note: If you do not feel comfortable working inside your monitor,
this modification is not for you! If this is the case, either find
someone who has the experience and knowledge necessary or take
this article and your 1902 to a qualified service technician. Read this
disclaimer until you realize that I will not be held responsible for any
damage you may do to yourself or your monitor.

If you find the components already in place, yet the monitor wil l not
allow analog RGB, it is possible that some traces have been cut on
the board near the RGB switch. If so, you are on your own, but
simply reconnecting them should be sufficient to get it working.

Now to the modification itself. Figure 1 is the complete parts list, and
all components are both commonly available and low cost. Figure 2
shows the layout of the board and the approximate location of the
parts to add. All parts to be added are clearly marked with silk
screen on the 1902 main board. Step by step, here we go:

1. Remove the back cover
- 6 screws

2. Remove shield on bottom of main board
- unsolder and twist tabs

3. Remove metal mounting plates holding input jacks and small
boards.

- 3 screws through main board
- 1 screw holding the two plates together
- 1 screw holding RCA jack block
- 2 posts holding RGB connector

4. Remove metal shield from component side of board.
- twist tabs

5. Locate and suck the solder from the holes for the components to
be added.

- R7267/8/9 in area 1, near IC7201
-R7270 /1 /2 in area 3
- D 7 2 1 8 / 1 9 / 2 0 in area 3
- C7202/3/4 in area 3
-C7219/20 in area 2
- J M 1 2 3 / 4 / 5 in area 3

6. Solder in components, paying particular attention to the polarity
of the electrolytic capacitors and diodes. Capacitors are marked
on the board's silk screening with a 'dot' near the negative lead.
Diodes are shown with a picture just like the schematic repre
sentation.

NOTE: the board is single sided, and the bonding is not the best on
the traces, so use caution and low heat so you won't damage the
traces.

7. Replace the top shield and metal mounting plates.

8. Test your work at this time by placing the switch in the third
position (to the right as seen from the rear of the monitor, facing
the switch) and hooking the Amiga to the monitor through a
standard Amiga RGB cable.

9. If all is well, replace the bottom shield and resolder the tabs

10. Some 1902 monitors had a smaller hole through which the RGB
switch protruded, allowing it to be used in only 2 positions
(positive and negative RGBI). If this is the case, cut the slot in the
case to allow the switch to be placed in the newly acquired RGB
analog position.

11. Replace the cover. Enjoy!

Resistors

Figure 1: Parts List

Capacitors

R7267
R7268
R7269
R7270
R7271
R7272

150 ohms
150 ohms
150 ohms
820 ohms
820 ohms
820 ohms

C7202 3 3 0 u f - 1 0 V
C7203 3 3 0 u f - 1 0 V
C7204 3 3 0 u f - 1 0 V
C7219 .Oluf
C7220 47 u f - 1 0 V

Diodes

D7218 1N4148
D7219 1N4148
D7220 1N4148

Jumpers

JM123 wire
JM124 wire
JM125 wire

Figure 2: As viewed from bottom of board

IC7203

RGB Switch

3333333333333333333333
3333333333333333333333
3333333333333333333333
3333333333333333333333

222
222

IC7201

IC7202

The Transactor 72 November 1987: Volume 8, Issue 0 3

Amiga Dispatches
by Tim Grantham, Toronto, Ontario

As I write this, the stock price of CBM has dropped yet again to about 8.50
on the NYSE, where it has steadied. A quarterly report is due out in the
middle of August and I would not be at all surprised if it contains news of
a loss, news that has already leaked to Wall Street.

We will all know by the time you read this, of course, but don't be too
disheartened if it does. CBM does not seem to be laying off any more staff.
In fact, they seem to be hiring on a small basis. In addition, part of the
loss may be attributable to initial manufacturing costs of the 500 and the
2000. Reports indicate that the 500 has gotten off to a good start in sales
and that should be reflected in the next quarterly report.

This brings my network memberships to five. However, it has been so
long since I last accessed Delphi that I have misplaced my password. If
you think that is indicative of my opinion of the value of Delphi, I shan't
correct you.

PDTips

As usual, the arena (or should I say 'free-for-all'?) of public domain
software has seen the arrival of some powerful new contenders. ACO
2.00 by Steve Pietrowicz, currently available exclusively on PeopleLink,
is an Amiga version of a concept originally introduced on a Macintosh
program entitled VMCO. Faithful readers of this column may remember
my description of VMCO in the late lamented TPUG Magazine.

The program is intended for live telecommunicating. The display consists
of a series of empty chairs around a conference table. As each attendee
arrives, the empty chair is replaced with a picture of the new arrival.
When that person makes a comment, they can switch the picture
displayed to reflect the content of the comment. One might have a happy
face, a 'flame' or angry face, a 'back-in-a-minute' face, and so on. Of
course, this display only appears on the machines of those attendees who
are running the software, and have the faces of each attendee stored in
the program's face libraries.

I have recently joined two more information services in my obsessive
quest for Amiga information: GEnie and BIX. The latter is pretty expen
sive — accessed from Canada through Tymnet, it is $15 (US) per hour at
1200 bps. That figure is for non-prime hours and there is an additional
$25 (US) sign-up charge.

I found it particularly irritating that nowhere are potential Canadian
customers of BIX told that the Tymnet access charge is $6 (US) rather
than the $2 (US) spelled out in the ads in BYTE and in the sign-on
message. Most Canadians don't find out about the extra charge until they
get their bills, I imagine. The only reason / found out was because my
nasty suspicious nature made me ask the service rep who had called to
confirm my sign-on. He had to go to some lengths to find out himself.
Grrrrr.

BIX is a great place for in-depth Amiga technical information, though. I
was able to get help on Charlie Heath's getfile requester for my keep
program (coming RSN) directly from cheath himself. To many profes
sional programmers, the cost of the service is well worth the information
gained.

GEnie, on the other hand, is clearly intended to be a consumer network.
So far, they have been a model of efficiency and service: costs are clearly
stated, in Canadian dollars for Canadian customers, and documentation
arrived promptly. There is a vigorous Amiga club, *Starship Amiga*,
operated by Deb Christensen. deb! defected from the Delphi network,
where she had arrived after CompuServe had booted CBM from opera
tion of its Commodore forums. I have not had an opportunity to spend
much time wandering the decks of *Starship Amiga*, but for less than
$10 (Can.) per hour (plus the $25 (Can.) signup fee), it appears to well
worth investigating.

The Amiga version, ACO, adds colour to the proceedings, so to speak.
DPaint can be used to create your own faces, or they can be designed
with the ACOfaces program available as part of the ACO.arc file. The
whole thing is built on Dan James' excellent comm terminal program.

Journal is an intriguing program. It records all InputEvents generated
by the input.device, including timings, and stores them into a file. These
events consist of key presses and mouse actions. Then, using the
accompanying Playback program, the sequence of InputEvents can be
replayed through the input.device, fooling the Amiga into thinking they
are really originating from the operator. The result is an exact playback of
the user's interaction with the computer. Talk about the ghost in the
machine!

Journal suggests a number of interesting applications: as a way to create
script files for terminal programs; for software tutorials; and for product
demonstrations. Users of DPaint II, for example, could see just how Jim
Sachs created all those wonderful graphics.

Two new languages have arrived on the scene: Draco and Icon.

Draco is described by its inventor, Chris Gray of Edmonton, Alberta, as a
language combining all the best features of C and Pascal. Originally
developed for CP/M-80 systems, Jeffries has added a Draco compiler for
the Amiga.

Icon is a descendant of SNOBOL, an interesting language with a host of
powerful string-handling features. Icon also offers list processing and set
manipulation commands, but is better integrated and more consistent
than Snobol. Scott Ballantyne has ported version 6 of Icon to the Amiga
already, and is now porting 6.3, which should be ready this fall.

73 The Transactor November 1987: Volume 8, Issue 0 3

Several issues ago, I hinted broadly that CBM should make the include
files available to the general public at a nominal charge, so that people
like Jim Butterfield could leave AmigaBASIC behind and start digging
through the OS in assembly language and C without paying an arm and a
leg for a compiler. I'm pleased to announce that CBM is doing exactly
that: for $20 (US) you get two disks containing the C and assembly
language include files and the 1.2 Autodocs to tell you what it's all about.
If you want to order them, send a request and a cheque to Laurie Brown
at CBM's West Chester HQ.

A note of warning: currently, the only PD assembler I know of that is
completely compatible with the .i include files, is A68k by Charlie Gibbs.
Others require that the include files be reformatted first.

TAB Books has published Amiga Assembly Language Programming,
(*2711-H, $19.95). I don't know if it's any good, but it is the first of its
kind.

Hard and soft news

You may remember my complaints last issue about Amiga Tax, a
Canadian income tax calculation program. David Sopuch, one of the
programmers, tells me that registered owners will be notified of the
availability of an upgrade that fixes bugs and adds enhancements. Beta
testers and Revenue Canada willing, it should be ready by December, at a
cost of $29.95.

Toronto's Eric Haberfellner has completed the latest version of his fine
shareware VT100/102 terminal emulator Handshake. He has added
Ymodem and batch Ymodem file transfers, and fixed some minor bugs.
In a survey of available VT100 emulators recently carried out on Usenet,
Haberfellner's program came out on top. All he requests is $25, folks.

Comspec is delivering their version of a recoverable RAM disk (RRD) to
owners of the AX2000 memory boards. The first 900 or so AX2000 units
require a minor hardware fix to use the RRD. This is provided as part of
the upgrade package, in addition to the software. Comspec's RRD is
slightly different from others in that the Amiga literally sees it as another
disk drive - it can be formatted, diskdoctored, disksalved and diskcopied.
Most importantly, of course, it can survive a warm reboot (ctrl-amiga-
amiga).

By the time you read this, Comspec will have also announced the
availability of their SCSI hard drives. Domenic DeFrancesco, designer of
the both the RAM board and the SCSI interface, told me that the SCSI
interface will autoconfigure, has a bus pass-through and does not
interfere with multitasking in any way. It will provide transfer rates of
nearly 290 Kb per second for reads and 250 Kb for writes, once the
AmigaDOS hard drive support arrives from CBM. The drive chassis has
room for one full height drive, or 2 half-height drives. In addition, two
ports are provided to chain several other SCSI devices, including Macin
tosh hard drives. First offerings consist of a 20 Mb and a 40 Mb drive. The
SCSI interface itself will likely be available separately in the near future.

ASDG Inc. makes a number of products that have been very well
received, including Face, a floppy disk access accelerator program, and a
2 Mb Zorro RAM board that is upgradable to 8 Mb. Now they are working
on two other products: the 2000-and-l and SDP (Satellite Disk
Processor). The former, to cost about $800 (US), is a box for the 1000 that
will accept plug-in cards intended for both the 1000 and the 2000,
including the Bridge card. The SDP, as I understand it, will reorganize the
tracks on a disk to provide faster access. All ASDG hardware comes with
an unusually long 18-month warranty; all software is provided with
lifetime free upgrades, and is not copy protected. Bravo!

Michigan Software, the makers of the Insider RAM board, are now selling
Kwikstart This kit provides Kickstart 1.2 in ROM for the 1000, as it is
now for the 500 and 2000. It doesn't lock you out of future versions of
Kickstart, however. By simply holding the warm reboot keys a little
longer, the Kwikstart ROMs will be switched out, and you can boot with a
different Kickstart. The product works with the Insider board and costs
$169.95 (US). Using the Kwikstart ROMs also frees 256K of the RAM
previously used by the disk-loaded Kickstart - a well thought out
product.

VkleoScape 3D is now available and the source of some spectacular 3D
animation demos. Look for them on the new series of CBM television ads
to start running in September... Digiview 2.0 and Digipaint 2.0 have
also arrived. The former provides some first-rate image processing
software and the latter is a HAM-mode paint program that permits
drawing with all 4096 colours... The makers of Acquisition and
Datamat. two powerful relational database management programs,
have responded to vociferous complaints of difficulty of use with im
proved user interfaces and documentation... Mimetics, publishers of the
SoundScape system, have expanded their developer support to include
full documentation of all the soundscape. l ibrary functions and Aztec
C support...

Online 2.00 is a significant upgrade to the original with VT100 and
Tektronics terminal emulations added; Kermit, Ymodem and Zmodem
protocols supported; autochop; ANSI colour; and the ability to keep up
with text output. It no longer hogs the printer device, either. However, a
small bug has surfaced: if you disable the autochop feature, Xmodem
transfers will no longer work. Publisher Micro Systems Software is
providing a free fix.

Diga! (wish I knew what the name meant), from Aegis Development,
appears to be following in the footsteps of Soundscape. The company is
posting documentation on the terminal emulations and the proprietary
DoubleTalk protocol on the networks to encourage outside developers.
The new version of the program being developed by Aegis will include
the WXmodem protocol used by PeopleLink, and a chat window for live
conferencing.

By now you may know that the 500 provides NTSC output in mono
chrome only. Those who need a colour output for their VCR have three
possible solutions. Mimetics will be selling genlocks for all three Amigas
that, in addition to synchronizing the Amiga output to another video
source, provide a colour NTSC signal from the RGBA output. CBM will be
selling an an encoder that does the same thing for about $50 (US). Or you
can make your own encoder, using the same Motorola 1377P chip that
the 1000 uses, for about $25 in parts. You can write to Motorola for free
documentation that includes a schematic.

The Commodore 64 emulator I have mentioned in the past should be out
by the time you read this. It will cost about $ 150 (US), and consists of both
software and a hardware interface that plugs into the parallel port and
permits connection of the 1541 disk drive. The makers claim emulation is
complete, with the exception of the SID chip, and they now have GEOS
running on the Amiga. The emulator takes over the computer, however.
No multitasking possible.

Microfiche Filer provides a uniquely Amiga way of viewing a database:
as the name implies, all the records are present on the screen in a
miniaturized format. One can scan them with a 'magnifying glass' and
zoom in on particular records. Because it handles graphic data as well as
text and numbers, this is an ideal means to store and display real-estate
properties, personnel records and so on. A possible limitation is that the
entire database must be in memory at once.

The Transactor 74 November 1987: Volume 8, Issue 0 3

Darrin Massena's MenuEd program now works under 1.2. Now, if only
someone would finish the Egad gadget editor... Textcraft Phis has
been released in Europe. No word about when it will cross the sea...
SoftCircuits Inc. has announced that a schematic capture program called
Scheme is in beta test and will soon be available for $499.95 (US). It is
compatible with their successful PCLO printed circuit board layout
software series, which now includes PCLOjr, a scaled-down version for
home use selling at $69.95 (US)... The German version of the 2000,
available in Canada and Europe, has wait states in the RAM plugged into
the so-called CPU bus slot that slow the machine to about 85-90 % of the
speed of a 1000. The 500 and the West Chester 2000 (when it arrives) will
not have this problem.

Joanne Park here in Toronto removed a resistor from the encoder circuit
in her 1000 as described in Amazing Computing, Vol. 2, No. 7, tested it
with a vectorscope and found that the colour balance was bang on.
However, her Amiga was a pre-June '86 machine: the Amazing article
said the removed resistor in these machines should be replaced with a
470K Ohm resistor. I suppose the lesson here is that those who need to
make the change should get someone with a vectorscope to check i t . . .

TDI will get some needed competition when Oxxi, of Maxiplan reknown,
comes out with their Modula 2 compiler, called Benchmark. Reports
from beta testers indicate that it is very fast... City Desk, a desktop
publishing program written for MicroSearch Inc. by SunRize Industries
(who also make the PerfectSound stereo digitizer), is now available. For
more info, contact Tom Hayden at (713) 988-2818, 9-6 CST... Two
attractive disk-based magazines have appeared for the Amiga, 77K New
Alladin and AMneivs. The latter is of particular interest to Canadians
since it is published in Montreal. The full address is Vertex Associates,
415 Trenton Ave., Montreal, PQ, H3P 2A1. Phone: (514) 739-3301.

Has anyone besides me noticed the bug in the opt i version of the dir
command that appears when it is used with the ram: disk? If you delete a
file, the file disappears but the memory does not get deallocated. You can
have an empty ram: disk that takes up 200K of precious memory!

I'm glad to see that an increasing number of third-party Amiga devel
opers have established a network presence. Aegis Development and
Microlllusions have their own conferences (forums) on BIX; Micro Sys
tems Software fields questions on CIS; ASDG, C Ltd., and Gold Disk make
regular appearances on major networks. Most Amiga developers have
proven to be accessible and responsive to their customers and I hope they
continue to do so.

The Amiga, network computing and the whole damn thing

In my nine-to-five capacity as assistant editor of Design Engineering
magazine, I have been able to gain a fairly broad perspective on the use of
computers, from micros to supercomputers.

One of the most exciting developments is in the area of 'distributed
computing'. This requires multiple computers communicating over a
network. The idea is to distribute the execution of a single large
program over all the machines in the network, assigning procedures to
the'most appropriate computer. Image processing functions, for exam
ple, could be executed by a dedicated array processor on the network,
while the user interface for the program could be handled by a personal
computer. The entire process would be transparent to the user, sitting at
his or her console. More importantly, it would be independent of the
network, computers or operating systems being used - a tall order, but
one that embodies the dream of integrating all computer resources into
one huge computing system.

The Transactor

Xerox developed the first distributed computing system, implementing
RPCs (remote procedure calls) under its XNS (Xerox Network System).
Sun Microsystems made RPCs more broadly available by implementing
them under TCP/IP, an industry standard networking protocol, and
NFS (Network File System), its own network data-sharing protocol that
has become a de facto industry standard. Now Apollo has thrown its
hat into the token ring by placing the specifications for its NCS (Network
Computing System) into the public domain.

Apollo's scheme is the most flexible, powerful system yet, for a number
of reasons. One, in addition to being machine and operating system
independent, it's network independent. It could quite literally be imple
mented over a telephone line with a modem at each end, though the
transmission overhead would slow down program execution probably
beyond the point of practicality. Two, it supports concurrent program
ming. The same procedure could be installed and called on multiple
machines simultaneously, with all results funnelled to the calling
program.

(I recently saw a demonstration of over 30 Apollo workstations concur
rently calculating a Mandelbrot picture. What would normally have
taken well over two hours on one workstation took seven minutes on
the network. Bear in mind that all the workstations were simultane
ously being used by their operators for other tasks - some were not
even aware that their machines were also working on the Mandelbrot
picture.)

Thirdly, it provides for dynamic load balancing across the network.
What this means is that if one computer has more CPU time free than
another, the system will have the RPC executed by that machine.
Besides providing more efficient use of the computing hardware availa
ble, this makes life easier for the programmer writing the distributed
application. He or she does not have to know which machine(s) carry
the code for the RPC.

Unfortunately for Apollo, the industry momentum is behind Sun's NFS
system. Adopting Apollo's superior system would mean a good deal of
retrenching. Nevertheless, people are impressed with the system's
features. Apollo has established the Network Computing Forum to
discuss distributed computing and over thirty companies have joined,
including Sun, Apple, Texas Instruments and Motorola. My sources
indicate that members want to see the features of NCS developed under
NFS.

Where does the Amiga fit into this? Now that Ameristar Technologies
has developed Ethernet boards for the Amiga and NFS client software,
the Amiga can fit into a distributed computing environment. It would
provide much of the same functionality as the workstations - the
graphic interface, the multitasking - but at a low cost. With the
concurrent computing capability provided by NCS, a network consist
ing entirely of Amigas could simultaneously execute a single program.

The more I learn about the industry as a whole, the more I see the
Amiga filling a large niche between the workstation and the micro. IBM
and Apple have each developed such products but at several times the
price of the Amiga without several times the capability.

I'm always interested in any comments or questions you may have.
They can be sent to me c/o The Transactor, or via electronic mail
addressed to 71425,1646 on CompuServe; AMTAG on PeopleLink;
dispatcher on BIX; t.grantham on GEnie; or to Tim Grantham on
Wayne Beyea's fine Bloom Beacon BBS at (416) 297-5607.

75 November 1987: Volume 8, Issue 0 3

News BRK
Submitting NEWS BRK Press Releases

If you have a press release you would like to submit for the NEWS BRK column,
make sure that the computer or device for which the product is intended is
prominently noted. We receive hundreds of press releases for each issue, and
ones whose intended readership is not clear must unfortunately go straight to the
trash bin. It should also be mentioned here that we only print product releases
which are in some way applicable to Commodore equipment. News of events
such as computer shows should be received at least 6 months in advance.

Transac tor N e w s

No-Fault Program Entry Insurance

We get several letters in the wake of each issue reporting problems with
programs typed in from listings in the magazine. We understand the frustration
readers feel when they have typed in several pages of DATA statements or
assembler source only to find that the resulting program runs either incorrectly
or not at all, whether it was their error or ours that is to blame.

We're hoping that our new No-Fault Program Insurance system will provide a
way out. Here's how it works: let's suppose you've just entered a long program
from the latest issue and saved it to disk. Now you run it but your machine
crashes, so you unload a few appropriate expletives and load it back in to
recheck the Verifizer codes. A few hours later, your eyeballs are spinning in
counter-rotating circles and you still haven't found the bug, so you save the
program to a new disk, label it clearly with your name, address and phone
number, plus the volume and issue number you were working from, and drop it
in the mail to us with a brief description of the problem.

When we get your disk, we'll return it with the official version of the program
alongside your own as soon as possible. You'll be out the price of the postage, but
you'll have a working program. We'll be out the postage too, but we'll have a
hand-entered copy of the program with which we can find out whether the
listing in the magazine contains an error. That will make it a lot easier for us to
track down the occasional bug amongst the many programs we publish, so that
we can print corrections as soon as possible after the original version appears.

By the way, if you'd like to check with us by phone for bug reports before you
mail in the disk, that's fine, and just might save you the extra trouble of getting
the package ready.

Send TPUG Subscriptions to TPUG!

If you wish to receive the Transactor containing the insert for TPUG members
(Toronto Pet Users Group), you must be a TPUG member. To become a TPUG
member, write them at 5300 Yonge Street, Toronto, Ontario, M2M 5R2.

You can do yourself, TPUG, and us a favour by writing to them directly. Using
our subscription cards to start or renew TPUG memberships may save you a few
cents in postage, but can lead to bureaucratic slip-ups resulting in shipment of
the wrong magazine, or at best a delay in your subscription. Also, please
remember to make cheques payable to "TPUG Inc." for TPUG memberships.

Transactor Renewals

Many subscription renewals arrive with a request that they be "back-dated" to a
previous issue. The main reason we can't oblige is the postage difference
between copies that go out as part of the bulk subscriber mailing and a single
copy at regular rates (you may have noticed that our price for back issues
includes the cost of postage). Subscriptions can only be started with the next
issue due out. Earlier magazines must be ordered as back issues.

Subscription orders must be received at least three weeks before the release of
an issue to ensure that the subscription will start with that issue. So, if you order
a subscription and don't get the next issue that comes out, it may be that we

received it too late to get your name to the printer; your first issue should be the
following one.

Use the New Subscription Cards!

When ordering subscriptions or Transactor products, please use a subscription
card from the most recent issue. The cards are constantly being updated, and
product and price information from older cards is no longer valid. Sub cards that
show our old address will take longer to reach us, and many of the products
listed are no longer available. The most notable difference between the old and
new sub cards is the Canadian price for a year's subscription: it is now $19.00,
and the $15.00 price listed on the older cards will no longer be honoured.

New Transactor Special Offers

Beginning with this issue, we are starting a policy of special offers every issue.
The subscription card announces the offer, which is valid for items ordered from
that subscription card only, and only for the specified time.

The special offer this issue is for Transactor disks: buy any three, and get two
free! This does not apply to disk subscriptions, only to three disks ordered at one
time. Simply use the order card (insert from this issue only), mark off any 5 disks,
but send payment for only 3 (or check off 10 and pay for 6). This offer applies
only to orders postmarked before November 1, 1987, so we recommend you
take advantage of it now!

New Combo-Subscription Premiums

Up to now, when you ordered a combined magazine/disk subscription, we sent
you a free Transactor T-Shirt to sweeten the deal. Sorry, but we have to
withdraw that offer, effective immediately. Instead, you now get your choice of
the T-Shirt, the Potpourri Disk, or the TransBasic 2 Disk and Manual -
whichever suits you best! Just check the appropriate box at the top of the Order
Form when you fill in your combo-subscription application.

U.S. Orders Invoiced In Canadian Dollars

If you ordered a subscription from the U.S. and received an invoice for $19.50,
don't be alarmed: that's 19.50 Canadian dollars, which works out to just under
$15.00 US at current exchange rates.

Advertisers Wanted

If anyone is interested in placing full-page, half-page or quarter-page colour or
black and white ads in the Transactor, please contact us for rates and informa
tion. Yup, you heard right. We'll take ads now, but space is limited. Our ceiling
currently is the cover spots plus 5 pages of the interior.

Group Subscription Rates: The 20/20 Deal

The Transactor has always been popular among Commodore user groups, so to
encourage new subscribers we are offering quantity discounts for magazine and
disk subscriptions: 20 percent off for group orders of 20 or more subscriptions. If
you can get together enough friends or club members, just put all the subscrip
tions in a single envelope, and you get the discount. You don't need to be a user
group to qualify - any 20 or more subscription cards in a single package get the
20/20 deal, no questions asked.

Mail-Order Products No Longer Offered

We have removed several products from our mail-order card: The Gnome Speed
Compiler and Gnome Kit Utility, the "pocket" series of software, PRISM's
SuperKit 1541, the BH100 hardware course material, the Anchor Volksmodems,
and the Comspec 2 megabyte RAM expansion units. We still have some stock of
the software and can order more of the other products if necessary, so we should
be able to fill any orders from previous subscription cards.

The Transactor 76 November 1987: Volume 8, Issue 0 3

Transactor Mail Order

The following details are for products listed on the mail order card. If you have a
particular question about an item that isn't answered here, please write or call.
We'll get back to you and most likely incorporate the answer into future editions
of these descriptions so that others might benefit from your enquiry.

• Moving Pictures - the C-64 Animation System, $29.95 (US/C)
This package is a fast, smooth, full-screen animator for the Commodore 64,
written by AHA! (Acme Heuristic Applications!). With Moving Pictures you use
your favourite graphics tool to draw the frames of your movie, then show it at full
animation speed with a single command. Movie 'scripts' written in BASIC can
use the Moving Pictures command set to provide complete control of animated
creations. BASIC is still available for editing scripts or executing programs even
while a movie is being displayed. Animation sequences can easily be added to
BASIC programs. Moving Pictures features include: split screen operation - part
graphics, part text - even while a movie is running; repeat, stop at any frame,
change position and colours, vary display speed, etc; hold several movies in
memory and switch instantly from one movie to another; instant, on-line help
available at the touch of a key; no copy protection used on disk.

• The Potpourri Disk, $17.95 US, $19.95 Cdn.
This is a C-64 product from the software company called AHA!, otherwise
known as Nick Sullivan and Chris Zamara. The Potpourri disk is a wide
assortment of 18 programs ranging from games to educational programs to
utilities. All programs can be accessed from a main menu or loaded separately.
No copy protection is used on the disk, so you can copy the programs you want
to your other disks for easy access. Built-in help is available from any program at
any time with the touch of a key, so you never need to pick up a manual or exit a
program to learn how to use it. Many of the programs on the disk are of a high
enough quality that they could be released on their own, but you get all 18 on the
Potpourri disk for just $17.95 US / $19.95 Canadian. See the Ad in this issue for
more information.

• TransBASIC II $17.95 US, $19.95 Cdn.
An updated TransBASIC disk is now available, containing all TB modules ever
printed. The first TransBASIC disk was released just as we published TransBASIC
Column *9 so the modules from columns 10,11 and 12 did not exist. The new
manual contains everything in the original, plus all the docs for the extras. There
are over 140 commands at your disposal. You pick the ones you want to use, and
in any combination! It's so simple that a summary of instructions fits right on the
disk label. The manual describes each of the commands, plus how to write your
own commands.

People who ordered TB 1 can upgrade to TB II for the price of a regular Transactor
Disk (8.95/9.95). If you are upgrading, you don't necessarily need to send us
your old TB disk; if you ordered it from us, we will have your name on file and
will send you TB II for the upgrade price. Please indicate on the order form that
you have the original TB and want it upgraded.

Some TBs were sold at shows, etc, and they won't be recorded in our database. If
that's the case, just send us anything you feel is proof enough (e.g. photocopy
your receipt, your manual cover, or even the diskette), and TB 11 is yours for the
upgrade price.

• The Amiga Disk, $12.95 US, $14.95 Cdn.
Finally, the first Transactor Amiga disk is available. It contains all of the Amiga
programs presented in the magazine, of course, including source code and
documentation. You will find the popular "PopColours" program, the program
mer's companion "Structure Browser", the Guru-killing "TrapSnapper", user-
friendly "PopToFront", and others. In addition, we have included public domain
programs - again, with documentation - that we think Transactor readers will
find useful. Among these are the indispensable ARC; Csh, a powerful CLI-
replacement DOS shell; BLink, a linker that is much faster and has more features
than the standard ALink; Foxy and Lynx, a 6502 cross assembler and linker that
makes its debut on the Amiga Disk; and an excellent shareware text editor called
UEdit. In addition, we have included our own expression-evaluator calculator
that uses variables and works in any number base. All programs contain source
code and documentation; all can be run from the CU, and some from Work
bench. There's something for everyone on the Transactor Amiga disk.

• Transactor T-Shirts, $13.95 US, $15.95 Cdn.
• Jumbo T-Shirt, $17.95 US, $19.95 Cdn.
As mentioned earlier, they come in Small, Medium, Large, Extra Large, and
Jumbo. The Jumbo makes a good night-shirt/beach-top - it's BIG. I'm 6 foot tall,
and weigh in at a slim 150 pounds - the Small fits me tight, but that's how I like
them. If you don't, we suggest you order them 1 size over what you usually buy.

One of the free gift choices we offer when you order a combination magazine
AND disk subscription is a Transactor T-Shirt in the size and colour of your
choice (sorry, Jumbo excluded). The shirts come in red or light blue with a 3-
colour screen on the front featuring our mascot, Duke, in a snappy white tux and
top hat, standing behind our logo in 3D letters.

• Inner Space Anthology $14.95 US, $17.95 Cdn.
This is our ever popular Complete Commodore Inner Space Anthology. Even
after two years, we still get inquiries about its contents. Briefly, The Anthology is
a reference book - it has no "reading" material (ie. "paragraphs"). In 122
compact pages, there are memory maps for 5 CBM computers, 3 Disk Drives,
and maps of COMAL; summaries of BASIC commands, Assembler and MLM
commands, and Wordprocessor and Spreadsheet commands. Machine Lan
guage codes and modes are summarized, as well as entry points to ROM
routines. There are sections on Music, Graphics, Network and BBS phone
numbers. Computer Clubs, Hardware, unit-to-unit conversions, plus much
more... about 2.5 million characters total!

• The Transactor Book of Bits and Pieces # 1 , $14.95 US, $17.95 Cdn.
Not counting the Table of Contents, the Index, and title pages, it's 246 pages of
Bits and Pieces from issues of The Transactor, Volumes 4 through 6. Even if you
have all those issues, it makes a handy reference - no more flipping through
magazines for that one bit that you just know is somewhere... Also, each item is
forward/reverse referenced. Occasionally the items in the Bits column appeared
as updates to previous bits. Bits that were similar in nature are also cross-
referenced. And the index makes it even easier to find those quick facts that
eliminate a lot of wheel re-inventing.

• The Bits and Pieces Disk, $8.95 US, 9.95 Cdn.
• Bits Book AND Disk, $19.95 US, 24.95 Cdn.
This disk contains all of the programs from the Transactor book of Bits and
Pieces (the "bits book"), which in turn come from the "Bits and Pieces" section of
past issues of the magazine. The "bits disk" can save you a lot of typing, and in
conjunction with the bits book and its comprehensive index can yield a quick
solution to many a programming problem.

• The G-LINK Interface, $59.95 US, 69.95 Cdn.
The Glink is a Commodore 64 to IEEE interface. It allows the 64 to use IEEE
peripherals such as the 4040, 8050, 9090, 9060, 2031, and SFD-1001 disk
drives, or any IEEE printer, modem, or even some Hewlett-Packard and
Tektronics equipment like oscilloscopes and spectrum analyzers. The beauty of
the Glink is its "transparency" to the C64 operating system. Some IEEE
interfaces for the 64 add BASIC 4.0 commands and other things to the system
that sometimes interfere with utilities you might like to install. The Glink adds
nothing! In fact it's so transparent that a switch is used to toggle between serial
and IEEE modes, not a linked-in command like some of the others. Switching
from one bus to the other is also possible with a small software routine as
described in the documentation.

As of Transactor Disk *19, a modified version of Jim Butterfield's "COPY-ALL"
will be on every disk. It allows file copying from serial to IEEE drives, or vice
versa.

• The Tr@ns@ctor 1541 ROM Upgrades, $59.95 US, $69.95 Cdn.
You can burn your own using the ROM dump file on Transactor Disk * 13, or you
can get a set from us. There are 2 ROMs per set, and they fix not only the SAVE®
bug, but a number of other bugs too (as described in P.A. Slaymaker's article, Vol
7, Issue 02). Remember, if SAVE® is about to fail on you, then Scratch and Save
may just clobber you too. This hasn't been proven 100%, but these ROMs will
eliminate any possibilities short of deliberately causing them (ie. allocating or
opening direct access buffers before the Save).

NOTE: Our ROM upgrade kit does NOT fit in the 1541C drives. Where we supply
two ROMs, Commodore now has it down to one MASSIVE 16 Kbyte ROM. We

The Transactor 77 November 1987: Volume 8, Issue Q3

don't know if the new drives still contain the bugs eliminated by our kit, but we'll
find out and re-cut a second kit if necessary. In the meantime, 1541C owners
should not order this item until further notice.

• The Micro Sleuth: C64/1541 Test Cartridge, $99.95 US, $129.95 Cdn.
We never expected this cartridge, designed by Brian Steele (a service technician
for several schools in southern Ontario), would turn out to be so popular. The
Micro Sleuth will test the RAM of a C64 even if the machine is too sick to run a
program! The cartridge takes complete control of the machine. It tests all RAM in
one mode, all ROM in another mode, and puts up a menu with the following
choices:

1) Check drive speed
2) Check drive alignment
3) 1541 Serial test
4) C64 serial test

5) Joystick port 1 test
6) Joystick port 2 test
7) Cassette port test
8) User port test

A second board (included) plugs onto the User Port; it contains 8 LEDs that let
you zero in on the faulty chip. Complete with manual.

Transactor Disks, Transactor Back Issues, and Microfiche

All Transactors since Volume 4 Issue 01 are now available on microfiche.
According to Computrex, our fiche manufacturer, the strips are the "popular 98
page size", so they should be compatible with every fiche reader. Some issues are
ONLY available on microfiche - these are marked "MF only". The other issues
are available in both paper and fiche. Don't check both boxes for these unless
you want both the paper version AND the microfiche slice for the same issue.

To keep things simple, the price of Transactor Microfiche is the same as
magazines, both for single copies and subscriptions, with one exception: a
complete set of 24 (Volumes 4,5,6, and 7) will cost just $49.95 US, $59.95 Cdn.

This list also shows the "themes" of each issue. Theme issues didn't start until
Volume 5, Issue 01. Transactor Disk *1 contains all programs from Volume 4,
and Disk # 2 contains all programs from Volume 5, Issues 1-3. Afterwards there is
a separate disk for each issue. Disk 8 from The Languages Issue contains
COMAL 0.14, a soft-loaded, slightly scaled-down version of the COMAL 2.0
cartridge. And Volume 6, Issue 05 lists the directories for Transactor Disks 1 to 9.

• Vol. 4, Issue 01 (• Disk 1) • Vol. 4, Issue 04 - MF only
• Vol. 4, Issue 02 (• Disk 1) • Vol. 4, Issue 05 - MF only
• Vol. 4, Issue 03 (• Disk 1) • Vol. 4, Issue 06 - MF only
• Vol. 5, Issue 01 - Sound and Graphics
• Vol. 5, Issue 02 - Transition to Machine Language - MF only
• Vol. 5, Issue 03 - Piracy and Protection - MF only
• Vol. 5, Issue 04 - Business & Education - MF only
• Vol. 5, Issue 05 - Hardware & Peripherals
• Vol. 5, Issue 06 - Aids & Utilities
• Vol. 6, Issue 01 - More Aids & Utilities
• Vol. 6, Issue 02 - Networking & Communications
• Vol. 6, Issue 03 - The Languages
• Vol. 6, Issue 04 - Implementing The Sciences
• Vol. 6, Issue 05 - Hardware & Software Interfacing
• Vol. 6, Issue 06 - Real Life Applications
• Vol. 7, Issue 01 - ROM / Kernel Routines
• Vol. 7, Issue 02 - Games From The Inside Out
• Vol. 7, Issue 03 - Programming The Chips
• Vol. 7, Issue 04 - Gizmos and Gadgets
• Vol. 7, Issue 05 - Languages II
• Vol. 7, Issue 06 - Simulations and Modelling
• Vol. 8, Issue 01 - Mathematics
• Vol. 8, Issue 02 - Operating Systems
• Vol. 8, Issue 03 - Feature: Surge Protector

Industry News

• Disk 1)
• Disk 1)
• Disk 1)
• Disk 2)
• Disk 2)
• Disk 2)
I Disk 3)
I Disk 4)
I Disk 5)
I Disk 6)
I Disk 7)
I Disk 8)
I Disk 9)
Disk 10)
Disk 11)
Disk 12)
Disk 13)
Disk 14)
Disk 15)
Disk 16)
Disk 17)
Disk 18)
Disk 19)
Disk 20)

The following items are based on press releases recently received from the
manufacturers. Please note that product descriptions are not the result of
evaluation by The Transactor.

A in i I• X P() in New York City

On October 10,1987, AmiEXPO, a show dedicated exclusively to the Amiga and
its aftermarket, will open to the public in New York City.

Among the exhibitors are Activision, subLogic, Central Coast, Brown-Wagh,
Amazine Computing, AmiProject, Byte by Byte, Gold Disk, Ameristar, Manx,
Lattice, Oxxi, and a host of others. Sounds like it'll be a good one!

Information on show hours and admission prices were not available at this time.
For more information, contact AmiEXPO Headquarters, 211 East 43rd Street,
Suite 301, New York, NY, 10017, 1-80032 AMIGA. In NY call (212) 867-4663.

Special Amiga Software Offer

Commodore has announced a special software promotion for Commodore
Computer Clubs and certified educators.

Commodore User Groups and their members, plus certified teachers and faculty
members of Canadian schools, colleges and universities purchasing any Amiga
computer between August 21 and October 31,1987, will be offered a selection of
brand-name software packages for a fraction of their usual retail price.

The "creativity software" package, with a suggested retail value of over $750 will
be available for only $199, and includes:

• DELUXE PAINT II by Electronic Arts
• PAGESETTER, the desktop publishing system from Gold Disk
• AEGIS ANIMATOR by Aegis Development
• TEXTCRAFT PLUS word processor from Commodore-Amiga
• MARBLE MADNESS, the arcade game, also by Electronic Arts
• A 500XJ joystick from Epyx

The "productivity software" package, suggested retail over $1400, will be
offered for only $399. This package contains:

• WORD PERFECT, a leading word processor from Word Perfect
• PAGESETTER DELUXE desktop publishing system with Laserscript, Fontset I,

and Hyphenation modules, by Gold Disk (upgradable to Professional Page).
• SUPERBASE PERSONAL, an innovative database from Progressive Periph

erals and Software
• MAXIPLAN 500, a multi-tasking spreadsheet program from Oxxi Inc.
• DIGA telecommunications program from Aegis
• DELUXE VIDEO presentation video and graphics system from Electronic Arts
• CLIMATE, an icon shell for Amiga DOS from Progressive Peripherals and

Software

These combination Amiga and software offers will be available in more than 600
independent retail, and participating Canadian Tire and K-Mart stores across
Canada. The promotion is aimed at influential users in our two most important
markets - home/hobby and education.

For more information, please contact, Stan Pagonis or Katherine Dimopoulos,
Commodore Business Machines, 3470 Pharmacy Avenue, Agincourt, Ontario,
(416)4994292.

Benchmark Modula-2 from Oxxi, Inc.

Oxxi, Inc. has begun shipping Benchmark, a Modula-2 development system for
the Amiga. The package includes an integrated compiler, linker and EMACS-
based editor, along with separate version of the compiler and linker, Modula-2
standard libraries plus full Amiga support libraries, profiling, cross-reference
and other utilities, extensive demos, and more than 700 pages of documentation.

Oxxi report average compilation speeds of 10,000 lines per minute with burst
speeds of up to 30,000 lines per minute. Their proprietary linker is claimed to be
similarly very fast compared with other high level language packages available
for the Amiga. Benchmark Modula-2 is said by Oxxi to generate object code files
of comparable size and execution speed to those created by the Aztec C compiler
from Manx Software Systems Inc.

The Transactor 78 November 1987: Volume 8, Issue 0 3

In addition to the basic $199 (US) package, three add-on products at $99 will be
available at the time of Benchmark's official September release. These products
will have extensive independent documentation and examples, but can only be
used in conjunction with the basic package. They are:

• C Language Standard Library, including versions of printf, scant, fopen, and
many other standard C functions for easy porting of C programs to Modula-2.

• A special 'simplified' set of the Amiga standard libraries to allow quick, painless
creation of Intuition windows, screens, gadgets and menus, plus convenient
access to the IDCMP (Intuition's message port), the console device, speech
synthesis, etc.

• IFF Libraries and a Graphic Image Resource Management library/utility. These
will allow the programmer to process IFF files, and to include graphics data, in
any of three formats, with program code for fast run-time access. The three
formats currently supported are Intuition (BOB) format, Simple Sprites and
Virtual Sprites.

For further information, contact Oxxi Inc., 1835-A Dawns Way, Fullerton,
California 92631. Telephone (714) 999-6710.

Design Text, from Design Tech Business Systems Inc.

DesignText, a full-featured WYSIWYG (What You See Is What You Get) word
processor for the Amiga, is scheduled to begin shipping October 1, 1987. The
product makes use of the Amiga's standard Intuition user interface, with
extensive use of gadgets, pulldown menus (most menu options also have
keyboard shortcuts) and windows. Fast scrolling of the text can be accomplished
either from the keyboard or with the mouse; horizontal scrolling is also
supported beyond the standard 80 column screen width. Both interlace and non-
interlace displays are available.

DesignText allows formatting in multiple columns, editing of multiple docu
ments in multiple windows simultaneously, tabular input of figures, semi
automatic hyphenation and a selection of thirteen 8x8 fonts, each with a 12x24
equivalent for printer output. Printing can be done in up to four passes for
additional resolution. IFF Graphics may be freely interspersed with text, and
normal printing can be interspersed with the bit-mapped printing used for the
special DesignText fonts.

Among the many other special features of DesignText are automatic index and
footnote generation, widow and orphan control, special drivers for popular
printers, allowing up to 292 dots per inch, the ability to import TextCraft,
Scribble and Ascii files, two spell-checking modes (real-time and whole-
document), complete on-line help, and optional terminal modules.

Apart from DesignText itself, the package also includes an easy-to-use data base
called PeopleBase. PeopleBase is fully integrated with DesignText and can be
called as a menu selection from within the word processor. It offers form letter
and Little Black Book generation, address list and mailing label printing, client
contact updating, multiple search criteria, and file security.

Utilities include a 68000 assembler and disassembler, search and sort routines,
local variables, and floating point. Amiga structures and constants are predefined
in " . j " files corresponding to the ".h" files used in C. Amiga library routines are
called by name. An Object Oriented Development Environment (ODE) is also
included. Example programs demonstrate graphics, HAM mode, speech synthe
sis, pull-down menus, etc. Source code for most of the system is included.

JForth is general purpose and can be used to develop games, business applica
tions, music system, etc. JForth will run about four times faster on Amigas
equipped with a 17 MHz 68020 processor. This makes it suitable for use in CPU-
intensive engineering applications.

JForth is available at an introductory price of $99.95 US. Contact: Delta
Research, 201D Street, Suite 15, San Rafael, California 94901, (415)485-6867.

LexCheck, from C.D.A Inc.

C.D.A. Inc. has announced LexCheck, a spelling checker for the Amiga.
LexCheck works with Textcraft, Scribble! and Notepad formatted files as well as
all ASCII text files. The master dictionary contains 100,000 words and you may
add your own words to the auxiliary dictionaries. Because the dictionary always
resides on disk, LexCheck uses less than 100K of RAM, and thus can be run
simultaneously with most word processors.

In addition to standard English vocabulary, LexCheck also recognizes a wide
variety of proper names, place names and technical terms. C.D.A. reports that a
two-page document can be checked in under one minute.

LexCheck runs under Workbench 1.2, and retails for $42.95 (US). Contact
C.D.A. Inc., P.O. Box 1052, Yreka, California96097, telephone(916)842-3431.

VldeoScape 3D, from Aegis Development Inc.

Aegis has released VideoScape 3D, a set of three programs for the Amiga that
permit the creation of 3-D television quality graphics and animations. The
package requires a minimum of 512K RAM, with more preferred.

The three programs that make up the package include Designer 3D, for making
3D objects; PlayANIM, for playing back animations in real time; and VideoScape
3D, for making the finished video, plus utilities for creating common geometric
shapes such as spheres, cones, rectangles and fractal landscapes.

3D objects are created either by numeric entry of X, Y, Z coordinates, or by one of
the supplied utilities, or by using Designer 3D's three-windowed point-and-
click method. With D3D, there are three windows representing the front, side,
and top view of your object as you create it. Scaling, numeric value display, and
numeric entry help maintain accuracy as the object is drawn. When finished, a
motion file can be loaded and the object is passed to the preview window. Here,
in real time, the object can be shown in motion from all sides. Each frame of the
motion file is recorded in RAM and played back at an adjustable speed.

DesignText will sell for $79 (US) for advance orders, and at the regular price of Once the objects are created, they are loaded into VideoScape's main control
$129 (US) upon release. For more information, contact DesignTech Business panel. Here the scenes are put together. Details regarding camera and object
Systems Inc., *304-850 Burrard Street, Vancouver, British Columbia V6Z2J1, motion, backgrounds, foregrounds, horizon and other information are deter-
Canada; or telephone (604) 669-1855. mined, and a complete scene is created. A VCR can be hooked up to record the

scene one frame at a time, or a few seconds at a time using the PlayANIM
JForth. from Delta Research Inc. module.

Delta Research has announced JForth for the Amiga, a software development To create an ANIM file requires at least one megabyte of RAM; however, many
environment based on the Forth '83 standard. The FIG and Forth-79 standards ANIMs will play back on a 512K Amiga. An ANIM file can compress a 40K frame
are also supported. Special toolboxes simplify development for the Amiga, into less than IK. The ANIM compressed file format is available at no charge to
Completed applications can be 'turnkeyed' and distributed without royalties. interested parties.

JForth's code is claimed to be comparable in speed to C. Programs are compiled VideoScape 3D, $199.95 (US) from Aegis Development Inc., 2210 Wilshire "277,
directly into machine code, unlike most Forths, which interpret tokens at run- Santa Monica, California, telephone (213) 392-9972.
time.

JForth is an interactive environment and a compiler. Any subroutine, variable,
constant or data structure can be tested directly from the keyboard. By compiling
incrementally, one can modify a program, compile, link and test in seconds.
The Transactor 79 November 1987: Volume 8, Issue Q3~

New! Improved!
TRANSBASIC 2!

with SYMASS

e e
ALPH

£ R A M I
iniiiiiiiiilllll

"I used to be so ashamed of my dull, messy code, but
no matter what I tried I just couldn't get rid of those
stubborn spaghetti stains!" writes Mrs. Jenny R. of
Richmond Hill, Ontario. "Then the Transactor people
asked me to try new TransBASIC 2, with Symass™.
They explained how TransBASIC 2, with its scores of
tiny 'tokens', would get my code looking clean, fast!

"I was sceptical, but I figured there was no harm in
giving it a try. Well, all it took was one load and I was
convinced! TransBASIC 2 went to work and got my
code looking clean as new in seconds! Now I'm telling
all my friends to try TransBASIC 2 in their machines!"

TransBASIC 2, with Symass, the symbolic assembler.
Package contains all 12 sets of TransBASIC modules
from the magazine, plus full documentation. Make your
BASIC programs run faster and better with over 140
added statement and function keywords.

Disk and Manual $17.95 US, $19.95 Cdn.
(see order card at center and News BRK for more info)

TransBASIC 2
"Cleaner code, load after load!"

Bits & Pieces I:
T h e D i s k

From the famous book of the same name, Transactor
Productions now brings you Bits & Pieces I: The Disk/
You'll thrill to the special effects of the screen
dazzlersl You'll laugh at the hours of typing time
you'll save! You'll be inspired as you boldly go
where no bits have gone before!

"Extraordinarily faithful to the plot "Absolutely

of the book. . . The BAM alone is magnetic!.'
worth the price of admission/" Gene Syscall

Vincent Canbyte

"If you mount only one bits disk in J 987, make it this
one! The fully cross-referenced index is unforgettablel

Recs Read, New York TIS
WARNING: Some sectors contain null bytes. Rated GCR

BITS & PIECES I: THE DISK, A Mylar Film, in association with Transactor Productions.
Playing at a drive near youl

Disk S8.95 US, S9.95 Cdn. Book S14.95 US, S17.95 Cdn.
Book & Disk Combo Just $ 19.95 US, $24.95 Cdnl

Type in a lot of Transactor programs?
Does the above time and appearance of the sky look familiar?

With The Transactor Disk, any program is just a LOAD away!

Only $8.95 US, $9.95 Cdn. Per Issue
6 Disk Subscription (one year)
Just $45.00 US, $55.00 Cdn.
(see order form at center fold)

Now Amiga Owners Can Save Time Too!
Transactor Amiga Disk #1, $12.95 US, $14.95 Cdn.

All the Amiga programs from the magazine, with complete
documentation on disk, plus our pick of the public domain!

THE WORLD OF
COMMODORE

1 1 1 ^ V^/

//je interests and needs of present and potential Commodore
owners — from hardware to software. Business to Personal to

Educational
Exhibitors: Write or phone today to find out how you

can take part in the World's largest Commodore Show.
For information contact: The Hunter Group Inc (416) 595-5906

Canadian World Of Commodore attended show in Commodore International a Vith 350 booths and attendance of over 38.000 users
JET than any other Commodore show in the World — Exhibit*,* _
year's show will be even larger. can take part in f n t of Commodore is designed specifically to appeal to For information contact: The nu..

INTERNATIONAL CENTRE
DECEMBER 3-6, '87

TORONTO

	Using "VERIFIZER"
	Bits and Pieces
	Letters
	TransBloops
	TeleColumn
	A Switchable RS-232 Interface
	Bullet Proof Computers
	The 1581 Disk Drive
	CP/M and the 1581 Disk Drive
	Programming The 1541
	Auto Transmission for the Commodore 64
	Common Code
	Getting Around With Gogo Dancer
	Now You See It, Now You Don't
	Fiddling About
	Twin-80 Screen For the Commodore 128
	Memory Lane
	Event Maker for the Amiga
	A New ECHO
	Programmed Cursor on the Amiga?
	Adding Analog RGB Capability to the 1902 Monitor
	Amiga Dispatches
	News BRK

